Metamath Proof Explorer


Theorem iswrdb

Description: A word over an alphabet is a function from an open range of nonnegative integers (of length equal to the length of the word) into the alphabet. (Contributed by Alexander van der Vekens, 30-Jul-2018)

Ref Expression
Assertion iswrdb W Word S W : 0 ..^ W S

Proof

Step Hyp Ref Expression
1 wrdf W Word S W : 0 ..^ W S
2 iswrdi W : 0 ..^ W S W Word S
3 1 2 impbii W Word S W : 0 ..^ W S