Database
REAL AND COMPLEX NUMBERS
Words over a set
Definitions and basic theorems
iswrddm0
Next ⟩
wrd0
Metamath Proof Explorer
Ascii
Unicode
Theorem
iswrddm0
Description:
A function with empty domain is a word.
(Contributed by
AV
, 13-Oct-2018)
Ref
Expression
Assertion
iswrddm0
⊢
W
:
∅
⟶
S
→
W
∈
Word
S
Proof
Step
Hyp
Ref
Expression
1
fzo0
⊢
0
..^
0
=
∅
2
1
feq2i
⊢
W
:
0
..^
0
⟶
S
↔
W
:
∅
⟶
S
3
iswrdi
⊢
W
:
0
..^
0
⟶
S
→
W
∈
Word
S
4
2
3
sylbir
⊢
W
:
∅
⟶
S
→
W
∈
Word
S