Metamath Proof Explorer


Theorem iswrdsymb

Description: An arbitrary word is a word over an alphabet if all of its symbols belong to the alphabet. (Contributed by AV, 23-Jan-2021)

Ref Expression
Assertion iswrdsymb W Word V i 0 ..^ W W i V W Word V

Proof

Step Hyp Ref Expression
1 wrdfn W Word V W Fn 0 ..^ W
2 1 anim1i W Word V i 0 ..^ W W i V W Fn 0 ..^ W i 0 ..^ W W i V
3 ffnfv W : 0 ..^ W V W Fn 0 ..^ W i 0 ..^ W W i V
4 2 3 sylibr W Word V i 0 ..^ W W i V W : 0 ..^ W V
5 iswrdi W : 0 ..^ W V W Word V
6 4 5 syl W Word V i 0 ..^ W W i V W Word V