Metamath Proof Explorer


Theorem iswspthn

Description: An element of the set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 11-May-2021)

Ref Expression
Assertion iswspthn W N WSPathsN G W N WWalksN G f f SPaths G W

Proof

Step Hyp Ref Expression
1 breq2 w = W f SPaths G w f SPaths G W
2 1 exbidv w = W f f SPaths G w f f SPaths G W
3 wspthsn N WSPathsN G = w N WWalksN G | f f SPaths G w
4 2 3 elrab2 W N WSPathsN G W N WWalksN G f f SPaths G W