Step |
Hyp |
Ref |
Expression |
1 |
|
iswspthsnon.v |
|
2 |
|
0ov |
|
3 |
|
df-wspthsnon |
|
4 |
3
|
mpondm0 |
|
5 |
4
|
oveqd |
|
6 |
|
id |
|
7 |
6
|
intnanrd |
|
8 |
1
|
wwlksnon0 |
|
9 |
7 8
|
syl |
|
10 |
9
|
rabeqdv |
|
11 |
|
rab0 |
|
12 |
10 11
|
eqtrdi |
|
13 |
2 5 12
|
3eqtr4a |
|
14 |
1
|
wspthsnon |
|
15 |
14
|
adantr |
|
16 |
15
|
oveqd |
|
17 |
|
eqid |
|
18 |
17
|
mpondm0 |
|
19 |
18
|
adantl |
|
20 |
16 19
|
eqtrd |
|
21 |
20
|
ex |
|
22 |
5 2
|
eqtrdi |
|
23 |
22
|
a1d |
|
24 |
21 23
|
pm2.61i |
|
25 |
1
|
wwlksonvtx |
|
26 |
25
|
pm2.24d |
|
27 |
26
|
impcom |
|
28 |
27
|
nexdv |
|
29 |
28
|
ralrimiva |
|
30 |
|
rabeq0 |
|
31 |
29 30
|
sylibr |
|
32 |
24 31
|
eqtr4d |
|
33 |
14
|
adantr |
|
34 |
|
oveq12 |
|
35 |
|
oveq12 |
|
36 |
35
|
breqd |
|
37 |
36
|
exbidv |
|
38 |
34 37
|
rabeqbidv |
|
39 |
38
|
adantl |
|
40 |
|
simprl |
|
41 |
|
simprr |
|
42 |
|
ovex |
|
43 |
42
|
rabex |
|
44 |
43
|
a1i |
|
45 |
33 39 40 41 44
|
ovmpod |
|
46 |
13 32 45
|
ecase |
|