Metamath Proof Explorer


Theorem iswun

Description: Properties of a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion iswun U V U WUni Tr U U x U x U 𝒫 x U y U x y U

Proof

Step Hyp Ref Expression
1 treq u = U Tr u Tr U
2 neeq1 u = U u U
3 eleq2 u = U x u x U
4 eleq2 u = U 𝒫 x u 𝒫 x U
5 eleq2 u = U x y u x y U
6 5 raleqbi1dv u = U y u x y u y U x y U
7 3 4 6 3anbi123d u = U x u 𝒫 x u y u x y u x U 𝒫 x U y U x y U
8 7 raleqbi1dv u = U x u x u 𝒫 x u y u x y u x U x U 𝒫 x U y U x y U
9 1 2 8 3anbi123d u = U Tr u u x u x u 𝒫 x u y u x y u Tr U U x U x U 𝒫 x U y U x y U
10 df-wun WUni = u | Tr u u x u x u 𝒫 x u y u x y u
11 9 10 elab2g U V U WUni Tr U U x U x U 𝒫 x U y U x y U