Database
TG (TARSKI-GROTHENDIECK) SET THEORY
Inaccessibles
Weak universes
iswun
Next ⟩
wuntr
Metamath Proof Explorer
Ascii
Unicode
Theorem
iswun
Description:
Properties of a weak universe.
(Contributed by
Mario Carneiro
, 2-Jan-2017)
Ref
Expression
Assertion
iswun
⊢
U
∈
V
→
U
∈
WUni
↔
Tr
⁡
U
∧
U
≠
∅
∧
∀
x
∈
U
⋃
x
∈
U
∧
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
Proof
Step
Hyp
Ref
Expression
1
treq
⊢
u
=
U
→
Tr
⁡
u
↔
Tr
⁡
U
2
neeq1
⊢
u
=
U
→
u
≠
∅
↔
U
≠
∅
3
eleq2
⊢
u
=
U
→
⋃
x
∈
u
↔
⋃
x
∈
U
4
eleq2
⊢
u
=
U
→
𝒫
x
∈
u
↔
𝒫
x
∈
U
5
eleq2
⊢
u
=
U
→
x
y
∈
u
↔
x
y
∈
U
6
5
raleqbi1dv
⊢
u
=
U
→
∀
y
∈
u
x
y
∈
u
↔
∀
y
∈
U
x
y
∈
U
7
3
4
6
3anbi123d
⊢
u
=
U
→
⋃
x
∈
u
∧
𝒫
x
∈
u
∧
∀
y
∈
u
x
y
∈
u
↔
⋃
x
∈
U
∧
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
8
7
raleqbi1dv
⊢
u
=
U
→
∀
x
∈
u
⋃
x
∈
u
∧
𝒫
x
∈
u
∧
∀
y
∈
u
x
y
∈
u
↔
∀
x
∈
U
⋃
x
∈
U
∧
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
9
1
2
8
3anbi123d
⊢
u
=
U
→
Tr
⁡
u
∧
u
≠
∅
∧
∀
x
∈
u
⋃
x
∈
u
∧
𝒫
x
∈
u
∧
∀
y
∈
u
x
y
∈
u
↔
Tr
⁡
U
∧
U
≠
∅
∧
∀
x
∈
U
⋃
x
∈
U
∧
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
10
df-wun
⊢
WUni
=
u
|
Tr
⁡
u
∧
u
≠
∅
∧
∀
x
∈
u
⋃
x
∈
u
∧
𝒫
x
∈
u
∧
∀
y
∈
u
x
y
∈
u
11
9
10
elab2g
⊢
U
∈
V
→
U
∈
WUni
↔
Tr
⁡
U
∧
U
≠
∅
∧
∀
x
∈
U
⋃
x
∈
U
∧
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U