Step |
Hyp |
Ref |
Expression |
1 |
|
iswwlksnon.v |
|
2 |
|
0ov |
|
3 |
|
df-wwlksnon |
|
4 |
3
|
mpondm0 |
|
5 |
4
|
oveqd |
|
6 |
|
df-wwlksn |
|
7 |
6
|
mpondm0 |
|
8 |
7
|
rabeqdv |
|
9 |
|
rab0 |
|
10 |
8 9
|
eqtrdi |
|
11 |
2 5 10
|
3eqtr4a |
|
12 |
1
|
wwlksnon |
|
13 |
12
|
adantr |
|
14 |
13
|
oveqd |
|
15 |
|
eqid |
|
16 |
15
|
mpondm0 |
|
17 |
16
|
adantl |
|
18 |
14 17
|
eqtrd |
|
19 |
18
|
ex |
|
20 |
5 2
|
eqtrdi |
|
21 |
20
|
a1d |
|
22 |
19 21
|
pm2.61i |
|
23 |
1
|
wwlknllvtx |
|
24 |
|
eleq1 |
|
25 |
24
|
eqcoms |
|
26 |
|
eleq1 |
|
27 |
26
|
eqcoms |
|
28 |
25 27
|
bi2anan9 |
|
29 |
23 28
|
syl5ibrcom |
|
30 |
29
|
con3rr3 |
|
31 |
30
|
ralrimiv |
|
32 |
|
rabeq0 |
|
33 |
31 32
|
sylibr |
|
34 |
22 33
|
eqtr4d |
|
35 |
12
|
adantr |
|
36 |
|
eqeq2 |
|
37 |
|
eqeq2 |
|
38 |
36 37
|
bi2anan9 |
|
39 |
38
|
rabbidv |
|
40 |
39
|
adantl |
|
41 |
|
simprl |
|
42 |
|
simprr |
|
43 |
|
ovex |
|
44 |
43
|
rabex |
|
45 |
44
|
a1i |
|
46 |
35 40 41 42 45
|
ovmpod |
|
47 |
11 34 46
|
ecase |
|