Metamath Proof Explorer


Theorem iswwlksnx

Description: Properties of a word to represent a walk of a fixed length, definition of WWalks expanded. (Contributed by AV, 28-Apr-2021)

Ref Expression
Hypotheses iswwlksnx.v V = Vtx G
iswwlksnx.e E = Edg G
Assertion iswwlksnx N 0 W N WWalksN G W Word V i 0 ..^ W 1 W i W i + 1 E W = N + 1

Proof

Step Hyp Ref Expression
1 iswwlksnx.v V = Vtx G
2 iswwlksnx.e E = Edg G
3 iswwlksn N 0 W N WWalksN G W WWalks G W = N + 1
4 1 2 iswwlks W WWalks G W W Word V i 0 ..^ W 1 W i W i + 1 E
5 df-3an W W Word V i 0 ..^ W 1 W i W i + 1 E W W Word V i 0 ..^ W 1 W i W i + 1 E
6 nn0p1gt0 N 0 0 < N + 1
7 6 gt0ne0d N 0 N + 1 0
8 7 adantr N 0 W = N + 1 N + 1 0
9 neeq1 W = N + 1 W 0 N + 1 0
10 9 adantl N 0 W = N + 1 W 0 N + 1 0
11 8 10 mpbird N 0 W = N + 1 W 0
12 hasheq0 W Word V W = 0 W =
13 12 necon3bid W Word V W 0 W
14 11 13 syl5ibcom N 0 W = N + 1 W Word V W
15 14 pm4.71rd N 0 W = N + 1 W Word V W W Word V
16 15 bicomd N 0 W = N + 1 W W Word V W Word V
17 16 anbi1d N 0 W = N + 1 W W Word V i 0 ..^ W 1 W i W i + 1 E W Word V i 0 ..^ W 1 W i W i + 1 E
18 5 17 syl5bb N 0 W = N + 1 W W Word V i 0 ..^ W 1 W i W i + 1 E W Word V i 0 ..^ W 1 W i W i + 1 E
19 4 18 syl5bb N 0 W = N + 1 W WWalks G W Word V i 0 ..^ W 1 W i W i + 1 E
20 19 ex N 0 W = N + 1 W WWalks G W Word V i 0 ..^ W 1 W i W i + 1 E
21 20 pm5.32rd N 0 W WWalks G W = N + 1 W Word V i 0 ..^ W 1 W i W i + 1 E W = N + 1
22 df-3an W Word V i 0 ..^ W 1 W i W i + 1 E W = N + 1 W Word V i 0 ..^ W 1 W i W i + 1 E W = N + 1
23 21 22 bitr4di N 0 W WWalks G W = N + 1 W Word V i 0 ..^ W 1 W i W i + 1 E W = N + 1
24 3 23 bitrd N 0 W N WWalksN G W Word V i 0 ..^ W 1 W i W i + 1 E W = N + 1