Step |
Hyp |
Ref |
Expression |
1 |
|
isxmetd.0 |
|
2 |
|
isxmetd.1 |
|
3 |
|
isxmet2d.2 |
|
4 |
|
isxmet2d.3 |
|
5 |
|
isxmet2d.4 |
|
6 |
2
|
fovrnda |
|
7 |
|
0xr |
|
8 |
|
xrletri3 |
|
9 |
6 7 8
|
sylancl |
|
10 |
3
|
biantrud |
|
11 |
9 10 4
|
3bitr2d |
|
12 |
5
|
3expa |
|
13 |
|
rexadd |
|
14 |
13
|
adantl |
|
15 |
12 14
|
breqtrrd |
|
16 |
15
|
anassrs |
|
17 |
6
|
3adantr3 |
|
18 |
|
pnfge |
|
19 |
17 18
|
syl |
|
20 |
19
|
ad2antrr |
|
21 |
|
oveq2 |
|
22 |
2
|
ffnd |
|
23 |
|
elxrge0 |
|
24 |
6 3 23
|
sylanbrc |
|
25 |
24
|
ralrimivva |
|
26 |
|
ffnov |
|
27 |
22 25 26
|
sylanbrc |
|
28 |
27
|
adantr |
|
29 |
|
simpr3 |
|
30 |
|
simpr1 |
|
31 |
28 29 30
|
fovrnd |
|
32 |
|
eliccxr |
|
33 |
31 32
|
syl |
|
34 |
|
renemnf |
|
35 |
|
xaddpnf1 |
|
36 |
33 34 35
|
syl2an |
|
37 |
21 36
|
sylan9eqr |
|
38 |
20 37
|
breqtrrd |
|
39 |
|
simpr2 |
|
40 |
28 29 39
|
fovrnd |
|
41 |
|
eliccxr |
|
42 |
40 41
|
syl |
|
43 |
|
elxrge0 |
|
44 |
43
|
simprbi |
|
45 |
40 44
|
syl |
|
46 |
|
ge0nemnf |
|
47 |
42 45 46
|
syl2anc |
|
48 |
47
|
a1d |
|
49 |
48
|
necon4bd |
|
50 |
49
|
adantr |
|
51 |
50
|
imp |
|
52 |
42
|
adantr |
|
53 |
|
elxr |
|
54 |
52 53
|
sylib |
|
55 |
16 38 51 54
|
mpjao3dan |
|
56 |
19
|
adantr |
|
57 |
|
oveq1 |
|
58 |
|
xaddpnf2 |
|
59 |
42 47 58
|
syl2anc |
|
60 |
57 59
|
sylan9eqr |
|
61 |
56 60
|
breqtrrd |
|
62 |
|
elxrge0 |
|
63 |
62
|
simprbi |
|
64 |
31 63
|
syl |
|
65 |
|
ge0nemnf |
|
66 |
33 64 65
|
syl2anc |
|
67 |
66
|
a1d |
|
68 |
67
|
necon4bd |
|
69 |
68
|
imp |
|
70 |
|
elxr |
|
71 |
33 70
|
sylib |
|
72 |
55 61 69 71
|
mpjao3dan |
|
73 |
1 2 11 72
|
isxmetd |
|