Metamath Proof Explorer


Theorem isxms2

Description: Express the predicate " <. X , D >. is an extended metric space" with underlying set X and distance function D . (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses isms.j J = TopOpen K
isms.x X = Base K
isms.d D = dist K X × X
Assertion isxms2 K ∞MetSp D ∞Met X J = MetOpen D

Proof

Step Hyp Ref Expression
1 isms.j J = TopOpen K
2 isms.x X = Base K
3 isms.d D = dist K X × X
4 1 2 3 isxms K ∞MetSp K TopSp J = MetOpen D
5 2 1 istps K TopSp J TopOn X
6 df-mopn MetOpen = x ran ∞Met topGen ran ball x
7 6 dmmptss dom MetOpen ran ∞Met
8 toponmax J TopOn X X J
9 8 adantl J = MetOpen D J TopOn X X J
10 simpl J = MetOpen D J TopOn X J = MetOpen D
11 9 10 eleqtrd J = MetOpen D J TopOn X X MetOpen D
12 elfvdm X MetOpen D D dom MetOpen
13 11 12 syl J = MetOpen D J TopOn X D dom MetOpen
14 7 13 sselid J = MetOpen D J TopOn X D ran ∞Met
15 xmetunirn D ran ∞Met D ∞Met dom dom D
16 14 15 sylib J = MetOpen D J TopOn X D ∞Met dom dom D
17 eqid MetOpen D = MetOpen D
18 17 mopntopon D ∞Met dom dom D MetOpen D TopOn dom dom D
19 16 18 syl J = MetOpen D J TopOn X MetOpen D TopOn dom dom D
20 10 19 eqeltrd J = MetOpen D J TopOn X J TopOn dom dom D
21 toponuni J TopOn dom dom D dom dom D = J
22 20 21 syl J = MetOpen D J TopOn X dom dom D = J
23 toponuni J TopOn X X = J
24 23 adantl J = MetOpen D J TopOn X X = J
25 22 24 eqtr4d J = MetOpen D J TopOn X dom dom D = X
26 25 fveq2d J = MetOpen D J TopOn X ∞Met dom dom D = ∞Met X
27 16 26 eleqtrd J = MetOpen D J TopOn X D ∞Met X
28 27 ex J = MetOpen D J TopOn X D ∞Met X
29 17 mopntopon D ∞Met X MetOpen D TopOn X
30 eleq1 J = MetOpen D J TopOn X MetOpen D TopOn X
31 29 30 syl5ibr J = MetOpen D D ∞Met X J TopOn X
32 28 31 impbid J = MetOpen D J TopOn X D ∞Met X
33 5 32 syl5bb J = MetOpen D K TopSp D ∞Met X
34 33 pm5.32ri K TopSp J = MetOpen D D ∞Met X J = MetOpen D
35 4 34 bitri K ∞MetSp D ∞Met X J = MetOpen D