Metamath Proof Explorer


Theorem itcoval

Description: The value of the function that returns the n-th iterate of a class (usually a function) with regard to composition. (Contributed by AV, 2-May-2024)

Ref Expression
Assertion itcoval Could not format assertion : No typesetting found for |- ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 df-itco Could not format IterComp = ( f e. _V |-> seq 0 ( ( g e. _V , j e. _V |-> ( f o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom f ) , f ) ) ) ) : No typesetting found for |- IterComp = ( f e. _V |-> seq 0 ( ( g e. _V , j e. _V |-> ( f o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom f ) , f ) ) ) ) with typecode |-
2 eqidd f = F 0 = 0
3 coeq1 f = F f g = F g
4 3 mpoeq3dv f = F g V , j V f g = g V , j V F g
5 dmeq f = F dom f = dom F
6 5 reseq2d f = F I dom f = I dom F
7 id f = F f = F
8 6 7 ifeq12d f = F if i = 0 I dom f f = if i = 0 I dom F F
9 8 mpteq2dv f = F i 0 if i = 0 I dom f f = i 0 if i = 0 I dom F F
10 2 4 9 seqeq123d f = F seq 0 g V , j V f g i 0 if i = 0 I dom f f = seq 0 g V , j V F g i 0 if i = 0 I dom F F
11 elex F V F V
12 seqex seq 0 g V , j V F g i 0 if i = 0 I dom F F V
13 12 a1i F V seq 0 g V , j V F g i 0 if i = 0 I dom F F V
14 1 10 11 13 fvmptd3 Could not format ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) : No typesetting found for |- ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) with typecode |-