Metamath Proof Explorer


Theorem itcoval0mpt

Description: A mapping iterated zero times (defined as identity function). (Contributed by AV, 4-May-2024)

Ref Expression
Hypothesis itcoval0mpt.f F=nAB
Assertion itcoval0mpt Could not format assertion : No typesetting found for |- ( ( A e. V /\ A. n e. A B e. W ) -> ( ( IterComp ` F ) ` 0 ) = ( n e. A |-> n ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 itcoval0mpt.f F=nAB
2 1 fveq2i Could not format ( IterComp ` F ) = ( IterComp ` ( n e. A |-> B ) ) : No typesetting found for |- ( IterComp ` F ) = ( IterComp ` ( n e. A |-> B ) ) with typecode |-
3 2 fveq1i Could not format ( ( IterComp ` F ) ` 0 ) = ( ( IterComp ` ( n e. A |-> B ) ) ` 0 ) : No typesetting found for |- ( ( IterComp ` F ) ` 0 ) = ( ( IterComp ` ( n e. A |-> B ) ) ` 0 ) with typecode |-
4 mptexg AVnABV
5 itcoval0 Could not format ( ( n e. A |-> B ) e. _V -> ( ( IterComp ` ( n e. A |-> B ) ) ` 0 ) = ( _I |` dom ( n e. A |-> B ) ) ) : No typesetting found for |- ( ( n e. A |-> B ) e. _V -> ( ( IterComp ` ( n e. A |-> B ) ) ` 0 ) = ( _I |` dom ( n e. A |-> B ) ) ) with typecode |-
6 4 5 syl Could not format ( A e. V -> ( ( IterComp ` ( n e. A |-> B ) ) ` 0 ) = ( _I |` dom ( n e. A |-> B ) ) ) : No typesetting found for |- ( A e. V -> ( ( IterComp ` ( n e. A |-> B ) ) ` 0 ) = ( _I |` dom ( n e. A |-> B ) ) ) with typecode |-
7 3 6 eqtrid Could not format ( A e. V -> ( ( IterComp ` F ) ` 0 ) = ( _I |` dom ( n e. A |-> B ) ) ) : No typesetting found for |- ( A e. V -> ( ( IterComp ` F ) ` 0 ) = ( _I |` dom ( n e. A |-> B ) ) ) with typecode |-
8 dmmptg nABWdomnAB=A
9 8 reseq2d nABWIdomnAB=IA
10 mptresid IA=nAn
11 9 10 eqtrdi nABWIdomnAB=nAn
12 7 11 sylan9eq Could not format ( ( A e. V /\ A. n e. A B e. W ) -> ( ( IterComp ` F ) ` 0 ) = ( n e. A |-> n ) ) : No typesetting found for |- ( ( A e. V /\ A. n e. A B e. W ) -> ( ( IterComp ` F ) ` 0 ) = ( n e. A |-> n ) ) with typecode |-