Metamath Proof Explorer


Theorem itcovalsucov

Description: The value of the function that returns the n-th iterate of a function with regard to composition at a successor. (Contributed by AV, 4-May-2024)

Ref Expression
Assertion itcovalsucov F V Y 0 IterComp F Y = G IterComp F Y + 1 = F G

Proof

Step Hyp Ref Expression
1 itcovalsuc F V Y 0 IterComp F Y = G IterComp F Y + 1 = G g V , j V F g F
2 eqidd F V Y 0 IterComp F Y = G g V , j V F g = g V , j V F g
3 coeq2 g = G F g = F G
4 3 ad2antrl F V Y 0 IterComp F Y = G g = G j = F F g = F G
5 id G = IterComp F Y G = IterComp F Y
6 fvex IterComp F Y V
7 5 6 eqeltrdi G = IterComp F Y G V
8 7 eqcoms IterComp F Y = G G V
9 8 3ad2ant3 F V Y 0 IterComp F Y = G G V
10 elex F V F V
11 10 3ad2ant1 F V Y 0 IterComp F Y = G F V
12 8 anim2i F V IterComp F Y = G F V G V
13 12 3adant2 F V Y 0 IterComp F Y = G F V G V
14 coexg F V G V F G V
15 13 14 syl F V Y 0 IterComp F Y = G F G V
16 2 4 9 11 15 ovmpod F V Y 0 IterComp F Y = G G g V , j V F g F = F G
17 1 16 eqtrd F V Y 0 IterComp F Y = G IterComp F Y + 1 = F G