Metamath Proof Explorer


Theorem itcovalsucov

Description: The value of the function that returns the n-th iterate of a function with regard to composition at a successor. (Contributed by AV, 4-May-2024)

Ref Expression
Assertion itcovalsucov Could not format assertion : No typesetting found for |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( ( IterComp ` F ) ` ( Y + 1 ) ) = ( F o. G ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 itcovalsuc Could not format ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( ( IterComp ` F ) ` ( Y + 1 ) ) = ( G ( g e. _V , j e. _V |-> ( F o. g ) ) F ) ) : No typesetting found for |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( ( IterComp ` F ) ` ( Y + 1 ) ) = ( G ( g e. _V , j e. _V |-> ( F o. g ) ) F ) ) with typecode |-
2 eqidd Could not format ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( g e. _V , j e. _V |-> ( F o. g ) ) = ( g e. _V , j e. _V |-> ( F o. g ) ) ) : No typesetting found for |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( g e. _V , j e. _V |-> ( F o. g ) ) = ( g e. _V , j e. _V |-> ( F o. g ) ) ) with typecode |-
3 coeq2 g = G F g = F G
4 3 ad2antrl Could not format ( ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) /\ ( g = G /\ j = F ) ) -> ( F o. g ) = ( F o. G ) ) : No typesetting found for |- ( ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) /\ ( g = G /\ j = F ) ) -> ( F o. g ) = ( F o. G ) ) with typecode |-
5 id Could not format ( G = ( ( IterComp ` F ) ` Y ) -> G = ( ( IterComp ` F ) ` Y ) ) : No typesetting found for |- ( G = ( ( IterComp ` F ) ` Y ) -> G = ( ( IterComp ` F ) ` Y ) ) with typecode |-
6 fvex Could not format ( ( IterComp ` F ) ` Y ) e. _V : No typesetting found for |- ( ( IterComp ` F ) ` Y ) e. _V with typecode |-
7 5 6 eqeltrdi Could not format ( G = ( ( IterComp ` F ) ` Y ) -> G e. _V ) : No typesetting found for |- ( G = ( ( IterComp ` F ) ` Y ) -> G e. _V ) with typecode |-
8 7 eqcoms Could not format ( ( ( IterComp ` F ) ` Y ) = G -> G e. _V ) : No typesetting found for |- ( ( ( IterComp ` F ) ` Y ) = G -> G e. _V ) with typecode |-
9 8 3ad2ant3 Could not format ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> G e. _V ) : No typesetting found for |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> G e. _V ) with typecode |-
10 elex F V F V
11 10 3ad2ant1 Could not format ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> F e. _V ) : No typesetting found for |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> F e. _V ) with typecode |-
12 8 anim2i Could not format ( ( F e. V /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( F e. V /\ G e. _V ) ) : No typesetting found for |- ( ( F e. V /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( F e. V /\ G e. _V ) ) with typecode |-
13 12 3adant2 Could not format ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( F e. V /\ G e. _V ) ) : No typesetting found for |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( F e. V /\ G e. _V ) ) with typecode |-
14 coexg F V G V F G V
15 13 14 syl Could not format ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( F o. G ) e. _V ) : No typesetting found for |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( F o. G ) e. _V ) with typecode |-
16 2 4 9 11 15 ovmpod Could not format ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( G ( g e. _V , j e. _V |-> ( F o. g ) ) F ) = ( F o. G ) ) : No typesetting found for |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( G ( g e. _V , j e. _V |-> ( F o. g ) ) F ) = ( F o. G ) ) with typecode |-
17 1 16 eqtrd Could not format ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( ( IterComp ` F ) ` ( Y + 1 ) ) = ( F o. G ) ) : No typesetting found for |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( ( IterComp ` F ) ` ( Y + 1 ) ) = ( F o. G ) ) with typecode |-