Metamath Proof Explorer


Theorem itcovalt2

Description: The value of the function that returns the n-th iterate of the "times 2 plus a constant" function with regard to composition. (Contributed by AV, 7-May-2024)

Ref Expression
Hypothesis itcovalt2.f F = n 0 2 n + C
Assertion itcovalt2 I 0 C 0 IterComp F I = n 0 n + C 2 I C

Proof

Step Hyp Ref Expression
1 itcovalt2.f F = n 0 2 n + C
2 fveq2 x = 0 IterComp F x = IterComp F 0
3 oveq2 x = 0 2 x = 2 0
4 3 oveq2d x = 0 n + C 2 x = n + C 2 0
5 4 oveq1d x = 0 n + C 2 x C = n + C 2 0 C
6 5 mpteq2dv x = 0 n 0 n + C 2 x C = n 0 n + C 2 0 C
7 2 6 eqeq12d x = 0 IterComp F x = n 0 n + C 2 x C IterComp F 0 = n 0 n + C 2 0 C
8 7 imbi2d x = 0 C 0 IterComp F x = n 0 n + C 2 x C C 0 IterComp F 0 = n 0 n + C 2 0 C
9 fveq2 x = y IterComp F x = IterComp F y
10 oveq2 x = y 2 x = 2 y
11 10 oveq2d x = y n + C 2 x = n + C 2 y
12 11 oveq1d x = y n + C 2 x C = n + C 2 y C
13 12 mpteq2dv x = y n 0 n + C 2 x C = n 0 n + C 2 y C
14 9 13 eqeq12d x = y IterComp F x = n 0 n + C 2 x C IterComp F y = n 0 n + C 2 y C
15 14 imbi2d x = y C 0 IterComp F x = n 0 n + C 2 x C C 0 IterComp F y = n 0 n + C 2 y C
16 fveq2 x = y + 1 IterComp F x = IterComp F y + 1
17 oveq2 x = y + 1 2 x = 2 y + 1
18 17 oveq2d x = y + 1 n + C 2 x = n + C 2 y + 1
19 18 oveq1d x = y + 1 n + C 2 x C = n + C 2 y + 1 C
20 19 mpteq2dv x = y + 1 n 0 n + C 2 x C = n 0 n + C 2 y + 1 C
21 16 20 eqeq12d x = y + 1 IterComp F x = n 0 n + C 2 x C IterComp F y + 1 = n 0 n + C 2 y + 1 C
22 21 imbi2d x = y + 1 C 0 IterComp F x = n 0 n + C 2 x C C 0 IterComp F y + 1 = n 0 n + C 2 y + 1 C
23 fveq2 x = I IterComp F x = IterComp F I
24 oveq2 x = I 2 x = 2 I
25 24 oveq2d x = I n + C 2 x = n + C 2 I
26 25 oveq1d x = I n + C 2 x C = n + C 2 I C
27 26 mpteq2dv x = I n 0 n + C 2 x C = n 0 n + C 2 I C
28 23 27 eqeq12d x = I IterComp F x = n 0 n + C 2 x C IterComp F I = n 0 n + C 2 I C
29 28 imbi2d x = I C 0 IterComp F x = n 0 n + C 2 x C C 0 IterComp F I = n 0 n + C 2 I C
30 1 itcovalt2lem1 C 0 IterComp F 0 = n 0 n + C 2 0 C
31 pm2.27 C 0 C 0 IterComp F y = n 0 n + C 2 y C IterComp F y = n 0 n + C 2 y C
32 31 adantl y 0 C 0 C 0 IterComp F y = n 0 n + C 2 y C IterComp F y = n 0 n + C 2 y C
33 1 itcovalt2lem2 y 0 C 0 IterComp F y = n 0 n + C 2 y C IterComp F y + 1 = n 0 n + C 2 y + 1 C
34 32 33 syld y 0 C 0 C 0 IterComp F y = n 0 n + C 2 y C IterComp F y + 1 = n 0 n + C 2 y + 1 C
35 34 ex y 0 C 0 C 0 IterComp F y = n 0 n + C 2 y C IterComp F y + 1 = n 0 n + C 2 y + 1 C
36 35 com23 y 0 C 0 IterComp F y = n 0 n + C 2 y C C 0 IterComp F y + 1 = n 0 n + C 2 y + 1 C
37 8 15 22 29 30 36 nn0ind I 0 C 0 IterComp F I = n 0 n + C 2 I C
38 37 imp I 0 C 0 IterComp F I = n 0 n + C 2 I C