Metamath Proof Explorer


Theorem itcovalt2lem1

Description: Lemma 1 for itcovalt2 : induction basis. (Contributed by AV, 5-May-2024)

Ref Expression
Hypothesis itcovalt2.f F = n 0 2 n + C
Assertion itcovalt2lem1 C 0 IterComp F 0 = n 0 n + C 2 0 C

Proof

Step Hyp Ref Expression
1 itcovalt2.f F = n 0 2 n + C
2 nn0ex 0 V
3 ovexd n 0 2 n + C V
4 3 rgen n 0 2 n + C V
5 2 4 pm3.2i 0 V n 0 2 n + C V
6 1 itcoval0mpt 0 V n 0 2 n + C V IterComp F 0 = n 0 n
7 5 6 mp1i C 0 IterComp F 0 = n 0 n
8 simpr C 0 n 0 n 0
9 8 nn0cnd C 0 n 0 n
10 simpl C 0 n 0 C 0
11 10 nn0cnd C 0 n 0 C
12 2nn0 2 0
13 12 numexp0 2 0 = 1
14 13 a1i C 0 n 0 2 0 = 1
15 14 oveq2d C 0 n 0 n + C 2 0 = n + C 1
16 8 10 nn0addcld C 0 n 0 n + C 0
17 16 nn0cnd C 0 n 0 n + C
18 17 mulridd C 0 n 0 n + C 1 = n + C
19 15 18 eqtrd C 0 n 0 n + C 2 0 = n + C
20 9 11 19 mvrraddd C 0 n 0 n + C 2 0 C = n
21 20 eqcomd C 0 n 0 n = n + C 2 0 C
22 21 mpteq2dva C 0 n 0 n = n 0 n + C 2 0 C
23 7 22 eqtrd C 0 IterComp F 0 = n 0 n + C 2 0 C