Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue integration
Lesbesgue integral
itg10
Next ⟩
i1f1lem
Metamath Proof Explorer
Ascii
Unicode
Theorem
itg10
Description:
The zero function has zero integral.
(Contributed by
Mario Carneiro
, 18-Jun-2014)
Ref
Expression
Assertion
itg10
⊢
∫
1
⁡
ℝ
×
0
=
0
Proof
Step
Hyp
Ref
Expression
1
i1f0
⊢
ℝ
×
0
∈
dom
⁡
∫
1
2
itg1val
⊢
ℝ
×
0
∈
dom
⁡
∫
1
→
∫
1
⁡
ℝ
×
0
=
∑
x
∈
ran
⁡
ℝ
×
0
∖
0
x
⁢
vol
⁡
ℝ
×
0
-1
x
3
1
2
ax-mp
⊢
∫
1
⁡
ℝ
×
0
=
∑
x
∈
ran
⁡
ℝ
×
0
∖
0
x
⁢
vol
⁡
ℝ
×
0
-1
x
4
rnxpss
⊢
ran
⁡
ℝ
×
0
⊆
0
5
ssdif0
⊢
ran
⁡
ℝ
×
0
⊆
0
↔
ran
⁡
ℝ
×
0
∖
0
=
∅
6
4
5
mpbi
⊢
ran
⁡
ℝ
×
0
∖
0
=
∅
7
6
sumeq1i
⊢
∑
x
∈
ran
⁡
ℝ
×
0
∖
0
x
⁢
vol
⁡
ℝ
×
0
-1
x
=
∑
x
∈
∅
x
⁢
vol
⁡
ℝ
×
0
-1
x
8
sum0
⊢
∑
x
∈
∅
x
⁢
vol
⁡
ℝ
×
0
-1
x
=
0
9
3
7
8
3eqtri
⊢
∫
1
⁡
ℝ
×
0
=
0