Step |
Hyp |
Ref |
Expression |
1 |
|
itg10a.1 |
|
2 |
|
itg10a.2 |
|
3 |
|
itg10a.3 |
|
4 |
|
itg10a.4 |
|
5 |
|
itg1val |
|
6 |
1 5
|
syl |
|
7 |
|
i1ff |
|
8 |
1 7
|
syl |
|
9 |
8
|
ffnd |
|
10 |
9
|
adantr |
|
11 |
|
fniniseg |
|
12 |
10 11
|
syl |
|
13 |
|
eldifsni |
|
14 |
13
|
ad2antlr |
|
15 |
|
simprl |
|
16 |
|
eldif |
|
17 |
|
simplrr |
|
18 |
4
|
ad4ant14 |
|
19 |
17 18
|
eqtr3d |
|
20 |
19
|
ex |
|
21 |
16 20
|
syl5bir |
|
22 |
15 21
|
mpand |
|
23 |
22
|
necon1ad |
|
24 |
14 23
|
mpd |
|
25 |
24
|
ex |
|
26 |
12 25
|
sylbid |
|
27 |
26
|
ssrdv |
|
28 |
2
|
adantr |
|
29 |
27 28
|
sstrd |
|
30 |
3
|
adantr |
|
31 |
|
ovolssnul |
|
32 |
27 28 30 31
|
syl3anc |
|
33 |
|
nulmbl |
|
34 |
29 32 33
|
syl2anc |
|
35 |
|
mblvol |
|
36 |
34 35
|
syl |
|
37 |
36 32
|
eqtrd |
|
38 |
37
|
oveq2d |
|
39 |
8
|
frnd |
|
40 |
39
|
ssdifssd |
|
41 |
40
|
sselda |
|
42 |
41
|
recnd |
|
43 |
42
|
mul01d |
|
44 |
38 43
|
eqtrd |
|
45 |
44
|
sumeq2dv |
|
46 |
|
i1frn |
|
47 |
1 46
|
syl |
|
48 |
|
difss |
|
49 |
|
ssfi |
|
50 |
47 48 49
|
sylancl |
|
51 |
50
|
olcd |
|
52 |
|
sumz |
|
53 |
51 52
|
syl |
|
54 |
45 53
|
eqtrd |
|
55 |
6 54
|
eqtrd |
|