Step |
Hyp |
Ref |
Expression |
1 |
|
i1f1.1 |
|
2 |
|
ovol0 |
|
3 |
|
0mbl |
|
4 |
|
mblvol |
|
5 |
3 4
|
ax-mp |
|
6 |
|
itg10 |
|
7 |
2 5 6
|
3eqtr4ri |
|
8 |
|
noel |
|
9 |
|
eleq2 |
|
10 |
8 9
|
mtbiri |
|
11 |
10
|
iffalsed |
|
12 |
11
|
mpteq2dv |
|
13 |
|
fconstmpt |
|
14 |
12 1 13
|
3eqtr4g |
|
15 |
14
|
fveq2d |
|
16 |
|
fveq2 |
|
17 |
7 15 16
|
3eqtr4a |
|
18 |
17
|
a1i |
|
19 |
|
n0 |
|
20 |
1
|
i1f1 |
|
21 |
20
|
adantr |
|
22 |
|
itg1val |
|
23 |
21 22
|
syl |
|
24 |
1
|
i1f1lem |
|
25 |
24
|
simpli |
|
26 |
|
frn |
|
27 |
25 26
|
ax-mp |
|
28 |
|
ssdif |
|
29 |
27 28
|
ax-mp |
|
30 |
|
difprsnss |
|
31 |
29 30
|
sstri |
|
32 |
31
|
a1i |
|
33 |
|
mblss |
|
34 |
33
|
adantr |
|
35 |
34
|
sselda |
|
36 |
|
eleq1w |
|
37 |
36
|
ifbid |
|
38 |
|
1ex |
|
39 |
|
c0ex |
|
40 |
38 39
|
ifex |
|
41 |
37 1 40
|
fvmpt |
|
42 |
35 41
|
syl |
|
43 |
|
iftrue |
|
44 |
43
|
adantl |
|
45 |
42 44
|
eqtrd |
|
46 |
|
ffn |
|
47 |
25 46
|
ax-mp |
|
48 |
|
fnfvelrn |
|
49 |
47 35 48
|
sylancr |
|
50 |
45 49
|
eqeltrrd |
|
51 |
|
ax-1ne0 |
|
52 |
|
eldifsn |
|
53 |
50 51 52
|
sylanblrc |
|
54 |
53
|
snssd |
|
55 |
32 54
|
eqssd |
|
56 |
55
|
sumeq1d |
|
57 |
|
1re |
|
58 |
24
|
simpri |
|
59 |
58
|
ad2antrr |
|
60 |
59
|
fveq2d |
|
61 |
60
|
oveq2d |
|
62 |
|
simplr |
|
63 |
62
|
recnd |
|
64 |
63
|
mulid2d |
|
65 |
61 64
|
eqtrd |
|
66 |
65 63
|
eqeltrd |
|
67 |
|
id |
|
68 |
|
sneq |
|
69 |
68
|
imaeq2d |
|
70 |
69
|
fveq2d |
|
71 |
67 70
|
oveq12d |
|
72 |
71
|
sumsn |
|
73 |
57 66 72
|
sylancr |
|
74 |
73 65
|
eqtrd |
|
75 |
56 74
|
eqtrd |
|
76 |
23 75
|
eqtrd |
|
77 |
76
|
ex |
|
78 |
77
|
exlimdv |
|
79 |
19 78
|
syl5bi |
|
80 |
18 79
|
pm2.61dne |
|