Metamath Proof Explorer


Theorem itg1add

Description: The integral of a sum of simple functions is the sum of the integrals. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Hypotheses i1fadd.1 φ F dom 1
i1fadd.2 φ G dom 1
Assertion itg1add φ 1 F + f G = 1 F + 1 G

Proof

Step Hyp Ref Expression
1 i1fadd.1 φ F dom 1
2 i1fadd.2 φ G dom 1
3 eqid i , j if i = 0 j = 0 0 vol F -1 i G -1 j = i , j if i = 0 j = 0 0 vol F -1 i G -1 j
4 eqid + ran F × ran G = + ran F × ran G
5 1 2 3 4 itg1addlem5 φ 1 F + f G = 1 F + 1 G