Metamath Proof Explorer


Theorem itg1addlem1

Description: Decompose a preimage, which is always a disjoint union. (Contributed by Mario Carneiro, 25-Jun-2014) (Proof shortened by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypotheses itg1addlem.1 φ F : X Y
itg1addlem.2 φ A Fin
itg1addlem.3 φ k A B F -1 k
itg1addlem.4 φ k A B dom vol
itg1addlem.5 φ k A vol B
Assertion itg1addlem1 φ vol k A B = k A vol B

Proof

Step Hyp Ref Expression
1 itg1addlem.1 φ F : X Y
2 itg1addlem.2 φ A Fin
3 itg1addlem.3 φ k A B F -1 k
4 itg1addlem.4 φ k A B dom vol
5 itg1addlem.5 φ k A vol B
6 4 5 jca φ k A B dom vol vol B
7 6 ralrimiva φ k A B dom vol vol B
8 3 adantrr φ k A x B B F -1 k
9 simprr φ k A x B x B
10 8 9 sseldd φ k A x B x F -1 k
11 1 ffnd φ F Fn X
12 11 adantr φ k A x B F Fn X
13 fniniseg F Fn X x F -1 k x X F x = k
14 12 13 syl φ k A x B x F -1 k x X F x = k
15 10 14 mpbid φ k A x B x X F x = k
16 15 simprd φ k A x B F x = k
17 16 ralrimivva φ k A x B F x = k
18 invdisj k A x B F x = k Disj k A B
19 17 18 syl φ Disj k A B
20 volfiniun A Fin k A B dom vol vol B Disj k A B vol k A B = k A vol B
21 2 7 19 20 syl3anc φ vol k A B = k A vol B