Metamath Proof Explorer


Theorem itg1addlem2

Description: Lemma for itg1add . The function I represents the pieces into which we will break up the domain of the sum. Since it is infinite only when both i and j are zero, we arbitrarily define it to be zero there to simplify the sums that are manipulated in itg1addlem4 and itg1addlem5 . (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Hypotheses i1fadd.1 φ F dom 1
i1fadd.2 φ G dom 1
itg1add.3 I = i , j if i = 0 j = 0 0 vol F -1 i G -1 j
Assertion itg1addlem2 φ I : 2

Proof

Step Hyp Ref Expression
1 i1fadd.1 φ F dom 1
2 i1fadd.2 φ G dom 1
3 itg1add.3 I = i , j if i = 0 j = 0 0 vol F -1 i G -1 j
4 iffalse ¬ i = 0 j = 0 if i = 0 j = 0 0 vol F -1 i G -1 j = vol F -1 i G -1 j
5 4 adantl φ i j ¬ i = 0 j = 0 if i = 0 j = 0 0 vol F -1 i G -1 j = vol F -1 i G -1 j
6 i1fima F dom 1 F -1 i dom vol
7 1 6 syl φ F -1 i dom vol
8 i1fima G dom 1 G -1 j dom vol
9 2 8 syl φ G -1 j dom vol
10 inmbl F -1 i dom vol G -1 j dom vol F -1 i G -1 j dom vol
11 7 9 10 syl2anc φ F -1 i G -1 j dom vol
12 11 ad2antrr φ i j ¬ i = 0 j = 0 F -1 i G -1 j dom vol
13 mblvol F -1 i G -1 j dom vol vol F -1 i G -1 j = vol * F -1 i G -1 j
14 12 13 syl φ i j ¬ i = 0 j = 0 vol F -1 i G -1 j = vol * F -1 i G -1 j
15 5 14 eqtrd φ i j ¬ i = 0 j = 0 if i = 0 j = 0 0 vol F -1 i G -1 j = vol * F -1 i G -1 j
16 neorian i 0 j 0 ¬ i = 0 j = 0
17 inss1 F -1 i G -1 j F -1 i
18 7 ad2antrr φ i j i 0 F -1 i dom vol
19 mblss F -1 i dom vol F -1 i
20 18 19 syl φ i j i 0 F -1 i
21 mblvol F -1 i dom vol vol F -1 i = vol * F -1 i
22 18 21 syl φ i j i 0 vol F -1 i = vol * F -1 i
23 1 ad2antrr φ i j i 0 F dom 1
24 simplrl φ i j i 0 i
25 simpr φ i j i 0 i 0
26 eldifsn i 0 i i 0
27 24 25 26 sylanbrc φ i j i 0 i 0
28 i1fima2sn F dom 1 i 0 vol F -1 i
29 23 27 28 syl2anc φ i j i 0 vol F -1 i
30 22 29 eqeltrrd φ i j i 0 vol * F -1 i
31 ovolsscl F -1 i G -1 j F -1 i F -1 i vol * F -1 i vol * F -1 i G -1 j
32 17 20 30 31 mp3an2i φ i j i 0 vol * F -1 i G -1 j
33 inss2 F -1 i G -1 j G -1 j
34 2 adantr φ i j G dom 1
35 34 8 syl φ i j G -1 j dom vol
36 35 adantr φ i j j 0 G -1 j dom vol
37 mblss G -1 j dom vol G -1 j
38 36 37 syl φ i j j 0 G -1 j
39 mblvol G -1 j dom vol vol G -1 j = vol * G -1 j
40 36 39 syl φ i j j 0 vol G -1 j = vol * G -1 j
41 2 ad2antrr φ i j j 0 G dom 1
42 simplrr φ i j j 0 j
43 simpr φ i j j 0 j 0
44 eldifsn j 0 j j 0
45 42 43 44 sylanbrc φ i j j 0 j 0
46 i1fima2sn G dom 1 j 0 vol G -1 j
47 41 45 46 syl2anc φ i j j 0 vol G -1 j
48 40 47 eqeltrrd φ i j j 0 vol * G -1 j
49 ovolsscl F -1 i G -1 j G -1 j G -1 j vol * G -1 j vol * F -1 i G -1 j
50 33 38 48 49 mp3an2i φ i j j 0 vol * F -1 i G -1 j
51 32 50 jaodan φ i j i 0 j 0 vol * F -1 i G -1 j
52 16 51 sylan2br φ i j ¬ i = 0 j = 0 vol * F -1 i G -1 j
53 15 52 eqeltrd φ i j ¬ i = 0 j = 0 if i = 0 j = 0 0 vol F -1 i G -1 j
54 53 ex φ i j ¬ i = 0 j = 0 if i = 0 j = 0 0 vol F -1 i G -1 j
55 iftrue i = 0 j = 0 if i = 0 j = 0 0 vol F -1 i G -1 j = 0
56 0re 0
57 55 56 eqeltrdi i = 0 j = 0 if i = 0 j = 0 0 vol F -1 i G -1 j
58 54 57 pm2.61d2 φ i j if i = 0 j = 0 0 vol F -1 i G -1 j
59 58 ralrimivva φ i j if i = 0 j = 0 0 vol F -1 i G -1 j
60 3 fmpo i j if i = 0 j = 0 0 vol F -1 i G -1 j I : 2
61 59 60 sylib φ I : 2