Metamath Proof Explorer


Theorem itg1addlem3

Description: Lemma for itg1add . (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Hypotheses i1fadd.1 φ F dom 1
i1fadd.2 φ G dom 1
itg1add.3 I = i , j if i = 0 j = 0 0 vol F -1 i G -1 j
Assertion itg1addlem3 A B ¬ A = 0 B = 0 A I B = vol F -1 A G -1 B

Proof

Step Hyp Ref Expression
1 i1fadd.1 φ F dom 1
2 i1fadd.2 φ G dom 1
3 itg1add.3 I = i , j if i = 0 j = 0 0 vol F -1 i G -1 j
4 eqeq1 i = A i = 0 A = 0
5 eqeq1 j = B j = 0 B = 0
6 4 5 bi2anan9 i = A j = B i = 0 j = 0 A = 0 B = 0
7 sneq i = A i = A
8 7 imaeq2d i = A F -1 i = F -1 A
9 sneq j = B j = B
10 9 imaeq2d j = B G -1 j = G -1 B
11 8 10 ineqan12d i = A j = B F -1 i G -1 j = F -1 A G -1 B
12 11 fveq2d i = A j = B vol F -1 i G -1 j = vol F -1 A G -1 B
13 6 12 ifbieq2d i = A j = B if i = 0 j = 0 0 vol F -1 i G -1 j = if A = 0 B = 0 0 vol F -1 A G -1 B
14 c0ex 0 V
15 fvex vol F -1 A G -1 B V
16 14 15 ifex if A = 0 B = 0 0 vol F -1 A G -1 B V
17 13 3 16 ovmpoa A B A I B = if A = 0 B = 0 0 vol F -1 A G -1 B
18 iffalse ¬ A = 0 B = 0 if A = 0 B = 0 0 vol F -1 A G -1 B = vol F -1 A G -1 B
19 17 18 sylan9eq A B ¬ A = 0 B = 0 A I B = vol F -1 A G -1 B