Step |
Hyp |
Ref |
Expression |
1 |
|
i1fadd.1 |
|
2 |
|
i1fadd.2 |
|
3 |
|
itg1add.3 |
|
4 |
|
itg1add.4 |
|
5 |
|
i1frn |
|
6 |
1 5
|
syl |
|
7 |
|
i1frn |
|
8 |
2 7
|
syl |
|
9 |
8
|
adantr |
|
10 |
|
i1ff |
|
11 |
1 10
|
syl |
|
12 |
11
|
frnd |
|
13 |
12
|
sselda |
|
14 |
13
|
adantr |
|
15 |
14
|
recnd |
|
16 |
1 2 3
|
itg1addlem2 |
|
17 |
16
|
ad2antrr |
|
18 |
|
i1ff |
|
19 |
2 18
|
syl |
|
20 |
19
|
frnd |
|
21 |
20
|
sselda |
|
22 |
21
|
adantlr |
|
23 |
17 14 22
|
fovrnd |
|
24 |
23
|
recnd |
|
25 |
15 24
|
mulcld |
|
26 |
9 25
|
fsumcl |
|
27 |
22
|
recnd |
|
28 |
27 24
|
mulcld |
|
29 |
9 28
|
fsumcl |
|
30 |
6 26 29
|
fsumadd |
|
31 |
1 2 3 4
|
itg1addlem4 |
|
32 |
15 27 24
|
adddird |
|
33 |
32
|
sumeq2dv |
|
34 |
9 25 28
|
fsumadd |
|
35 |
33 34
|
eqtrd |
|
36 |
35
|
sumeq2dv |
|
37 |
31 36
|
eqtrd |
|
38 |
|
itg1val |
|
39 |
1 38
|
syl |
|
40 |
19
|
adantr |
|
41 |
8
|
adantr |
|
42 |
|
inss2 |
|
43 |
42
|
a1i |
|
44 |
|
i1fima |
|
45 |
1 44
|
syl |
|
46 |
45
|
ad2antrr |
|
47 |
|
i1fima |
|
48 |
2 47
|
syl |
|
49 |
48
|
ad2antrr |
|
50 |
|
inmbl |
|
51 |
46 49 50
|
syl2anc |
|
52 |
12
|
ssdifssd |
|
53 |
52
|
sselda |
|
54 |
53
|
adantr |
|
55 |
20
|
adantr |
|
56 |
55
|
sselda |
|
57 |
|
eldifsni |
|
58 |
57
|
ad2antlr |
|
59 |
|
simpl |
|
60 |
59
|
necon3ai |
|
61 |
58 60
|
syl |
|
62 |
1 2 3
|
itg1addlem3 |
|
63 |
54 56 61 62
|
syl21anc |
|
64 |
16
|
ad2antrr |
|
65 |
64 54 56
|
fovrnd |
|
66 |
63 65
|
eqeltrrd |
|
67 |
40 41 43 51 66
|
itg1addlem1 |
|
68 |
|
iunin2 |
|
69 |
1
|
adantr |
|
70 |
69 44
|
syl |
|
71 |
|
mblss |
|
72 |
70 71
|
syl |
|
73 |
|
iunid |
|
74 |
73
|
imaeq2i |
|
75 |
|
imaiun |
|
76 |
|
cnvimarndm |
|
77 |
74 75 76
|
3eqtr3i |
|
78 |
40
|
fdmd |
|
79 |
77 78
|
syl5eq |
|
80 |
72 79
|
sseqtrrd |
|
81 |
|
df-ss |
|
82 |
80 81
|
sylib |
|
83 |
68 82
|
eqtr2id |
|
84 |
83
|
fveq2d |
|
85 |
63
|
sumeq2dv |
|
86 |
67 84 85
|
3eqtr4d |
|
87 |
86
|
oveq2d |
|
88 |
53
|
recnd |
|
89 |
65
|
recnd |
|
90 |
41 88 89
|
fsummulc2 |
|
91 |
87 90
|
eqtrd |
|
92 |
91
|
sumeq2dv |
|
93 |
|
difssd |
|
94 |
54
|
recnd |
|
95 |
94 89
|
mulcld |
|
96 |
41 95
|
fsumcl |
|
97 |
|
dfin4 |
|
98 |
|
inss2 |
|
99 |
97 98
|
eqsstrri |
|
100 |
99
|
sseli |
|
101 |
|
elsni |
|
102 |
101
|
ad2antlr |
|
103 |
102
|
oveq1d |
|
104 |
16
|
ad2antrr |
|
105 |
|
0re |
|
106 |
102 105
|
eqeltrdi |
|
107 |
21
|
adantlr |
|
108 |
104 106 107
|
fovrnd |
|
109 |
108
|
recnd |
|
110 |
109
|
mul02d |
|
111 |
103 110
|
eqtrd |
|
112 |
111
|
sumeq2dv |
|
113 |
8
|
adantr |
|
114 |
113
|
olcd |
|
115 |
|
sumz |
|
116 |
114 115
|
syl |
|
117 |
112 116
|
eqtrd |
|
118 |
100 117
|
sylan2 |
|
119 |
93 96 118 6
|
fsumss |
|
120 |
39 92 119
|
3eqtrd |
|
121 |
|
itg1val |
|
122 |
2 121
|
syl |
|
123 |
11
|
adantr |
|
124 |
6
|
adantr |
|
125 |
|
inss1 |
|
126 |
125
|
a1i |
|
127 |
45
|
ad2antrr |
|
128 |
48
|
ad2antrr |
|
129 |
127 128 50
|
syl2anc |
|
130 |
12
|
adantr |
|
131 |
130
|
sselda |
|
132 |
20
|
ssdifssd |
|
133 |
132
|
sselda |
|
134 |
133
|
adantr |
|
135 |
|
eldifsni |
|
136 |
135
|
ad2antlr |
|
137 |
|
simpr |
|
138 |
137
|
necon3ai |
|
139 |
136 138
|
syl |
|
140 |
131 134 139 62
|
syl21anc |
|
141 |
16
|
ad2antrr |
|
142 |
141 131 134
|
fovrnd |
|
143 |
140 142
|
eqeltrrd |
|
144 |
123 124 126 129 143
|
itg1addlem1 |
|
145 |
|
incom |
|
146 |
145
|
a1i |
|
147 |
146
|
iuneq2i |
|
148 |
|
iunin2 |
|
149 |
147 148
|
eqtri |
|
150 |
|
cnvimass |
|
151 |
19
|
fdmd |
|
152 |
151
|
adantr |
|
153 |
150 152
|
sseqtrid |
|
154 |
|
iunid |
|
155 |
154
|
imaeq2i |
|
156 |
|
imaiun |
|
157 |
|
cnvimarndm |
|
158 |
155 156 157
|
3eqtr3i |
|
159 |
11
|
fdmd |
|
160 |
159
|
adantr |
|
161 |
158 160
|
syl5eq |
|
162 |
153 161
|
sseqtrrd |
|
163 |
|
df-ss |
|
164 |
162 163
|
sylib |
|
165 |
149 164
|
eqtr2id |
|
166 |
165
|
fveq2d |
|
167 |
140
|
sumeq2dv |
|
168 |
144 166 167
|
3eqtr4d |
|
169 |
168
|
oveq2d |
|
170 |
133
|
recnd |
|
171 |
142
|
recnd |
|
172 |
124 170 171
|
fsummulc2 |
|
173 |
169 172
|
eqtrd |
|
174 |
173
|
sumeq2dv |
|
175 |
|
difssd |
|
176 |
170
|
adantr |
|
177 |
176 171
|
mulcld |
|
178 |
124 177
|
fsumcl |
|
179 |
|
dfin4 |
|
180 |
|
inss2 |
|
181 |
179 180
|
eqsstrri |
|
182 |
181
|
sseli |
|
183 |
|
elsni |
|
184 |
183
|
ad2antlr |
|
185 |
184
|
oveq1d |
|
186 |
16
|
ad2antrr |
|
187 |
13
|
adantlr |
|
188 |
184 105
|
eqeltrdi |
|
189 |
186 187 188
|
fovrnd |
|
190 |
189
|
recnd |
|
191 |
190
|
mul02d |
|
192 |
185 191
|
eqtrd |
|
193 |
192
|
sumeq2dv |
|
194 |
6
|
adantr |
|
195 |
194
|
olcd |
|
196 |
|
sumz |
|
197 |
195 196
|
syl |
|
198 |
193 197
|
eqtrd |
|
199 |
182 198
|
sylan2 |
|
200 |
175 178 199 8
|
fsumss |
|
201 |
21
|
adantr |
|
202 |
201
|
recnd |
|
203 |
16
|
ad2antrr |
|
204 |
12
|
adantr |
|
205 |
204
|
sselda |
|
206 |
203 205 201
|
fovrnd |
|
207 |
206
|
recnd |
|
208 |
202 207
|
mulcld |
|
209 |
208
|
anasss |
|
210 |
8 6 209
|
fsumcom |
|
211 |
200 210
|
eqtrd |
|
212 |
122 174 211
|
3eqtrd |
|
213 |
120 212
|
oveq12d |
|
214 |
30 37 213
|
3eqtr4d |
|