Metamath Proof Explorer


Theorem itg1addlem5

Description: Lemma for itg1add . (Contributed by Mario Carneiro, 27-Jun-2014)

Ref Expression
Hypotheses i1fadd.1 φ F dom 1
i1fadd.2 φ G dom 1
itg1add.3 I = i , j if i = 0 j = 0 0 vol F -1 i G -1 j
itg1add.4 P = + ran F × ran G
Assertion itg1addlem5 φ 1 F + f G = 1 F + 1 G

Proof

Step Hyp Ref Expression
1 i1fadd.1 φ F dom 1
2 i1fadd.2 φ G dom 1
3 itg1add.3 I = i , j if i = 0 j = 0 0 vol F -1 i G -1 j
4 itg1add.4 P = + ran F × ran G
5 i1frn F dom 1 ran F Fin
6 1 5 syl φ ran F Fin
7 i1frn G dom 1 ran G Fin
8 2 7 syl φ ran G Fin
9 8 adantr φ y ran F ran G Fin
10 i1ff F dom 1 F :
11 1 10 syl φ F :
12 11 frnd φ ran F
13 12 sselda φ y ran F y
14 13 adantr φ y ran F z ran G y
15 14 recnd φ y ran F z ran G y
16 1 2 3 itg1addlem2 φ I : 2
17 16 ad2antrr φ y ran F z ran G I : 2
18 i1ff G dom 1 G :
19 2 18 syl φ G :
20 19 frnd φ ran G
21 20 sselda φ z ran G z
22 21 adantlr φ y ran F z ran G z
23 17 14 22 fovrnd φ y ran F z ran G y I z
24 23 recnd φ y ran F z ran G y I z
25 15 24 mulcld φ y ran F z ran G y y I z
26 9 25 fsumcl φ y ran F z ran G y y I z
27 22 recnd φ y ran F z ran G z
28 27 24 mulcld φ y ran F z ran G z y I z
29 9 28 fsumcl φ y ran F z ran G z y I z
30 6 26 29 fsumadd φ y ran F z ran G y y I z + z ran G z y I z = y ran F z ran G y y I z + y ran F z ran G z y I z
31 1 2 3 4 itg1addlem4 φ 1 F + f G = y ran F z ran G y + z y I z
32 15 27 24 adddird φ y ran F z ran G y + z y I z = y y I z + z y I z
33 32 sumeq2dv φ y ran F z ran G y + z y I z = z ran G y y I z + z y I z
34 9 25 28 fsumadd φ y ran F z ran G y y I z + z y I z = z ran G y y I z + z ran G z y I z
35 33 34 eqtrd φ y ran F z ran G y + z y I z = z ran G y y I z + z ran G z y I z
36 35 sumeq2dv φ y ran F z ran G y + z y I z = y ran F z ran G y y I z + z ran G z y I z
37 31 36 eqtrd φ 1 F + f G = y ran F z ran G y y I z + z ran G z y I z
38 itg1val F dom 1 1 F = y ran F 0 y vol F -1 y
39 1 38 syl φ 1 F = y ran F 0 y vol F -1 y
40 19 adantr φ y ran F 0 G :
41 8 adantr φ y ran F 0 ran G Fin
42 inss2 F -1 y G -1 z G -1 z
43 42 a1i φ y ran F 0 z ran G F -1 y G -1 z G -1 z
44 i1fima F dom 1 F -1 y dom vol
45 1 44 syl φ F -1 y dom vol
46 45 ad2antrr φ y ran F 0 z ran G F -1 y dom vol
47 i1fima G dom 1 G -1 z dom vol
48 2 47 syl φ G -1 z dom vol
49 48 ad2antrr φ y ran F 0 z ran G G -1 z dom vol
50 inmbl F -1 y dom vol G -1 z dom vol F -1 y G -1 z dom vol
51 46 49 50 syl2anc φ y ran F 0 z ran G F -1 y G -1 z dom vol
52 12 ssdifssd φ ran F 0
53 52 sselda φ y ran F 0 y
54 53 adantr φ y ran F 0 z ran G y
55 20 adantr φ y ran F 0 ran G
56 55 sselda φ y ran F 0 z ran G z
57 eldifsni y ran F 0 y 0
58 57 ad2antlr φ y ran F 0 z ran G y 0
59 simpl y = 0 z = 0 y = 0
60 59 necon3ai y 0 ¬ y = 0 z = 0
61 58 60 syl φ y ran F 0 z ran G ¬ y = 0 z = 0
62 1 2 3 itg1addlem3 y z ¬ y = 0 z = 0 y I z = vol F -1 y G -1 z
63 54 56 61 62 syl21anc φ y ran F 0 z ran G y I z = vol F -1 y G -1 z
64 16 ad2antrr φ y ran F 0 z ran G I : 2
65 64 54 56 fovrnd φ y ran F 0 z ran G y I z
66 63 65 eqeltrrd φ y ran F 0 z ran G vol F -1 y G -1 z
67 40 41 43 51 66 itg1addlem1 φ y ran F 0 vol z ran G F -1 y G -1 z = z ran G vol F -1 y G -1 z
68 iunin2 z ran G F -1 y G -1 z = F -1 y z ran G G -1 z
69 1 adantr φ y ran F 0 F dom 1
70 69 44 syl φ y ran F 0 F -1 y dom vol
71 mblss F -1 y dom vol F -1 y
72 70 71 syl φ y ran F 0 F -1 y
73 iunid z ran G z = ran G
74 73 imaeq2i G -1 z ran G z = G -1 ran G
75 imaiun G -1 z ran G z = z ran G G -1 z
76 cnvimarndm G -1 ran G = dom G
77 74 75 76 3eqtr3i z ran G G -1 z = dom G
78 40 fdmd φ y ran F 0 dom G =
79 77 78 eqtrid φ y ran F 0 z ran G G -1 z =
80 72 79 sseqtrrd φ y ran F 0 F -1 y z ran G G -1 z
81 df-ss F -1 y z ran G G -1 z F -1 y z ran G G -1 z = F -1 y
82 80 81 sylib φ y ran F 0 F -1 y z ran G G -1 z = F -1 y
83 68 82 eqtr2id φ y ran F 0 F -1 y = z ran G F -1 y G -1 z
84 83 fveq2d φ y ran F 0 vol F -1 y = vol z ran G F -1 y G -1 z
85 63 sumeq2dv φ y ran F 0 z ran G y I z = z ran G vol F -1 y G -1 z
86 67 84 85 3eqtr4d φ y ran F 0 vol F -1 y = z ran G y I z
87 86 oveq2d φ y ran F 0 y vol F -1 y = y z ran G y I z
88 53 recnd φ y ran F 0 y
89 65 recnd φ y ran F 0 z ran G y I z
90 41 88 89 fsummulc2 φ y ran F 0 y z ran G y I z = z ran G y y I z
91 87 90 eqtrd φ y ran F 0 y vol F -1 y = z ran G y y I z
92 91 sumeq2dv φ y ran F 0 y vol F -1 y = y ran F 0 z ran G y y I z
93 difssd φ ran F 0 ran F
94 54 recnd φ y ran F 0 z ran G y
95 94 89 mulcld φ y ran F 0 z ran G y y I z
96 41 95 fsumcl φ y ran F 0 z ran G y y I z
97 dfin4 ran F 0 = ran F ran F 0
98 inss2 ran F 0 0
99 97 98 eqsstrri ran F ran F 0 0
100 99 sseli y ran F ran F 0 y 0
101 elsni y 0 y = 0
102 101 ad2antlr φ y 0 z ran G y = 0
103 102 oveq1d φ y 0 z ran G y y I z = 0 y I z
104 16 ad2antrr φ y 0 z ran G I : 2
105 0re 0
106 102 105 eqeltrdi φ y 0 z ran G y
107 21 adantlr φ y 0 z ran G z
108 104 106 107 fovrnd φ y 0 z ran G y I z
109 108 recnd φ y 0 z ran G y I z
110 109 mul02d φ y 0 z ran G 0 y I z = 0
111 103 110 eqtrd φ y 0 z ran G y y I z = 0
112 111 sumeq2dv φ y 0 z ran G y y I z = z ran G 0
113 8 adantr φ y 0 ran G Fin
114 113 olcd φ y 0 ran G 0 ran G Fin
115 sumz ran G 0 ran G Fin z ran G 0 = 0
116 114 115 syl φ y 0 z ran G 0 = 0
117 112 116 eqtrd φ y 0 z ran G y y I z = 0
118 100 117 sylan2 φ y ran F ran F 0 z ran G y y I z = 0
119 93 96 118 6 fsumss φ y ran F 0 z ran G y y I z = y ran F z ran G y y I z
120 39 92 119 3eqtrd φ 1 F = y ran F z ran G y y I z
121 itg1val G dom 1 1 G = z ran G 0 z vol G -1 z
122 2 121 syl φ 1 G = z ran G 0 z vol G -1 z
123 11 adantr φ z ran G 0 F :
124 6 adantr φ z ran G 0 ran F Fin
125 inss1 F -1 y G -1 z F -1 y
126 125 a1i φ z ran G 0 y ran F F -1 y G -1 z F -1 y
127 45 ad2antrr φ z ran G 0 y ran F F -1 y dom vol
128 48 ad2antrr φ z ran G 0 y ran F G -1 z dom vol
129 127 128 50 syl2anc φ z ran G 0 y ran F F -1 y G -1 z dom vol
130 12 adantr φ z ran G 0 ran F
131 130 sselda φ z ran G 0 y ran F y
132 20 ssdifssd φ ran G 0
133 132 sselda φ z ran G 0 z
134 133 adantr φ z ran G 0 y ran F z
135 eldifsni z ran G 0 z 0
136 135 ad2antlr φ z ran G 0 y ran F z 0
137 simpr y = 0 z = 0 z = 0
138 137 necon3ai z 0 ¬ y = 0 z = 0
139 136 138 syl φ z ran G 0 y ran F ¬ y = 0 z = 0
140 131 134 139 62 syl21anc φ z ran G 0 y ran F y I z = vol F -1 y G -1 z
141 16 ad2antrr φ z ran G 0 y ran F I : 2
142 141 131 134 fovrnd φ z ran G 0 y ran F y I z
143 140 142 eqeltrrd φ z ran G 0 y ran F vol F -1 y G -1 z
144 123 124 126 129 143 itg1addlem1 φ z ran G 0 vol y ran F F -1 y G -1 z = y ran F vol F -1 y G -1 z
145 incom F -1 y G -1 z = G -1 z F -1 y
146 145 a1i y ran F F -1 y G -1 z = G -1 z F -1 y
147 146 iuneq2i y ran F F -1 y G -1 z = y ran F G -1 z F -1 y
148 iunin2 y ran F G -1 z F -1 y = G -1 z y ran F F -1 y
149 147 148 eqtri y ran F F -1 y G -1 z = G -1 z y ran F F -1 y
150 cnvimass G -1 z dom G
151 19 fdmd φ dom G =
152 151 adantr φ z ran G 0 dom G =
153 150 152 sseqtrid φ z ran G 0 G -1 z
154 iunid y ran F y = ran F
155 154 imaeq2i F -1 y ran F y = F -1 ran F
156 imaiun F -1 y ran F y = y ran F F -1 y
157 cnvimarndm F -1 ran F = dom F
158 155 156 157 3eqtr3i y ran F F -1 y = dom F
159 11 fdmd φ dom F =
160 159 adantr φ z ran G 0 dom F =
161 158 160 eqtrid φ z ran G 0 y ran F F -1 y =
162 153 161 sseqtrrd φ z ran G 0 G -1 z y ran F F -1 y
163 df-ss G -1 z y ran F F -1 y G -1 z y ran F F -1 y = G -1 z
164 162 163 sylib φ z ran G 0 G -1 z y ran F F -1 y = G -1 z
165 149 164 eqtr2id φ z ran G 0 G -1 z = y ran F F -1 y G -1 z
166 165 fveq2d φ z ran G 0 vol G -1 z = vol y ran F F -1 y G -1 z
167 140 sumeq2dv φ z ran G 0 y ran F y I z = y ran F vol F -1 y G -1 z
168 144 166 167 3eqtr4d φ z ran G 0 vol G -1 z = y ran F y I z
169 168 oveq2d φ z ran G 0 z vol G -1 z = z y ran F y I z
170 133 recnd φ z ran G 0 z
171 142 recnd φ z ran G 0 y ran F y I z
172 124 170 171 fsummulc2 φ z ran G 0 z y ran F y I z = y ran F z y I z
173 169 172 eqtrd φ z ran G 0 z vol G -1 z = y ran F z y I z
174 173 sumeq2dv φ z ran G 0 z vol G -1 z = z ran G 0 y ran F z y I z
175 difssd φ ran G 0 ran G
176 170 adantr φ z ran G 0 y ran F z
177 176 171 mulcld φ z ran G 0 y ran F z y I z
178 124 177 fsumcl φ z ran G 0 y ran F z y I z
179 dfin4 ran G 0 = ran G ran G 0
180 inss2 ran G 0 0
181 179 180 eqsstrri ran G ran G 0 0
182 181 sseli z ran G ran G 0 z 0
183 elsni z 0 z = 0
184 183 ad2antlr φ z 0 y ran F z = 0
185 184 oveq1d φ z 0 y ran F z y I z = 0 y I z
186 16 ad2antrr φ z 0 y ran F I : 2
187 13 adantlr φ z 0 y ran F y
188 184 105 eqeltrdi φ z 0 y ran F z
189 186 187 188 fovrnd φ z 0 y ran F y I z
190 189 recnd φ z 0 y ran F y I z
191 190 mul02d φ z 0 y ran F 0 y I z = 0
192 185 191 eqtrd φ z 0 y ran F z y I z = 0
193 192 sumeq2dv φ z 0 y ran F z y I z = y ran F 0
194 6 adantr φ z 0 ran F Fin
195 194 olcd φ z 0 ran F 0 ran F Fin
196 sumz ran F 0 ran F Fin y ran F 0 = 0
197 195 196 syl φ z 0 y ran F 0 = 0
198 193 197 eqtrd φ z 0 y ran F z y I z = 0
199 182 198 sylan2 φ z ran G ran G 0 y ran F z y I z = 0
200 175 178 199 8 fsumss φ z ran G 0 y ran F z y I z = z ran G y ran F z y I z
201 21 adantr φ z ran G y ran F z
202 201 recnd φ z ran G y ran F z
203 16 ad2antrr φ z ran G y ran F I : 2
204 12 adantr φ z ran G ran F
205 204 sselda φ z ran G y ran F y
206 203 205 201 fovrnd φ z ran G y ran F y I z
207 206 recnd φ z ran G y ran F y I z
208 202 207 mulcld φ z ran G y ran F z y I z
209 208 anasss φ z ran G y ran F z y I z
210 8 6 209 fsumcom φ z ran G y ran F z y I z = y ran F z ran G z y I z
211 200 210 eqtrd φ z ran G 0 y ran F z y I z = y ran F z ran G z y I z
212 122 174 211 3eqtrd φ 1 G = y ran F z ran G z y I z
213 120 212 oveq12d φ 1 F + 1 G = y ran F z ran G y y I z + y ran F z ran G z y I z
214 30 37 213 3eqtr4d φ 1 F + f G = 1 F + 1 G