Metamath Proof Explorer


Theorem itg1cl

Description: Closure of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion itg1cl F dom 1 1 F

Proof

Step Hyp Ref Expression
1 itg1val F dom 1 1 F = x ran F 0 x vol F -1 x
2 i1frn F dom 1 ran F Fin
3 difss ran F 0 ran F
4 ssfi ran F Fin ran F 0 ran F ran F 0 Fin
5 2 3 4 sylancl F dom 1 ran F 0 Fin
6 i1ff F dom 1 F :
7 6 frnd F dom 1 ran F
8 7 ssdifssd F dom 1 ran F 0
9 8 sselda F dom 1 x ran F 0 x
10 i1fima2sn F dom 1 x ran F 0 vol F -1 x
11 9 10 remulcld F dom 1 x ran F 0 x vol F -1 x
12 5 11 fsumrecl F dom 1 x ran F 0 x vol F -1 x
13 1 12 eqeltrd F dom 1 1 F