Metamath Proof Explorer


Theorem itg1ge0

Description: Closure of the integral on positive simple functions. (Contributed by Mario Carneiro, 19-Jun-2014)

Ref Expression
Assertion itg1ge0 F dom 1 0 𝑝 f F 0 1 F

Proof

Step Hyp Ref Expression
1 i1frn F dom 1 ran F Fin
2 difss ran F 0 ran F
3 ssfi ran F Fin ran F 0 ran F ran F 0 Fin
4 1 2 3 sylancl F dom 1 ran F 0 Fin
5 4 adantr F dom 1 0 𝑝 f F ran F 0 Fin
6 i1ff F dom 1 F :
7 6 adantr F dom 1 0 𝑝 f F F :
8 7 frnd F dom 1 0 𝑝 f F ran F
9 8 ssdifssd F dom 1 0 𝑝 f F ran F 0
10 9 sselda F dom 1 0 𝑝 f F x ran F 0 x
11 i1fima2sn F dom 1 x ran F 0 vol F -1 x
12 11 adantlr F dom 1 0 𝑝 f F x ran F 0 vol F -1 x
13 10 12 remulcld F dom 1 0 𝑝 f F x ran F 0 x vol F -1 x
14 eldifi x ran F 0 x ran F
15 0cn 0
16 fnconstg 0 × 0 Fn
17 15 16 ax-mp × 0 Fn
18 df-0p 0 𝑝 = × 0
19 18 fneq1i 0 𝑝 Fn × 0 Fn
20 17 19 mpbir 0 𝑝 Fn
21 20 a1i F dom 1 0 𝑝 Fn
22 6 ffnd F dom 1 F Fn
23 cnex V
24 23 a1i F dom 1 V
25 reex V
26 25 a1i F dom 1 V
27 ax-resscn
28 sseqin2 =
29 27 28 mpbi =
30 0pval y 0 𝑝 y = 0
31 30 adantl F dom 1 y 0 𝑝 y = 0
32 eqidd F dom 1 y F y = F y
33 21 22 24 26 29 31 32 ofrfval F dom 1 0 𝑝 f F y 0 F y
34 33 biimpa F dom 1 0 𝑝 f F y 0 F y
35 22 adantr F dom 1 0 𝑝 f F F Fn
36 breq2 x = F y 0 x 0 F y
37 36 ralrn F Fn x ran F 0 x y 0 F y
38 35 37 syl F dom 1 0 𝑝 f F x ran F 0 x y 0 F y
39 34 38 mpbird F dom 1 0 𝑝 f F x ran F 0 x
40 39 r19.21bi F dom 1 0 𝑝 f F x ran F 0 x
41 14 40 sylan2 F dom 1 0 𝑝 f F x ran F 0 0 x
42 i1fima F dom 1 F -1 x dom vol
43 42 ad2antrr F dom 1 0 𝑝 f F x ran F 0 F -1 x dom vol
44 mblss F -1 x dom vol F -1 x
45 ovolge0 F -1 x 0 vol * F -1 x
46 44 45 syl F -1 x dom vol 0 vol * F -1 x
47 mblvol F -1 x dom vol vol F -1 x = vol * F -1 x
48 46 47 breqtrrd F -1 x dom vol 0 vol F -1 x
49 43 48 syl F dom 1 0 𝑝 f F x ran F 0 0 vol F -1 x
50 10 12 41 49 mulge0d F dom 1 0 𝑝 f F x ran F 0 0 x vol F -1 x
51 5 13 50 fsumge0 F dom 1 0 𝑝 f F 0 x ran F 0 x vol F -1 x
52 itg1val F dom 1 1 F = x ran F 0 x vol F -1 x
53 52 adantr F dom 1 0 𝑝 f F 1 F = x ran F 0 x vol F -1 x
54 51 53 breqtrrd F dom 1 0 𝑝 f F 0 1 F