Step |
Hyp |
Ref |
Expression |
1 |
|
itg10a.1 |
|
2 |
|
itg10a.2 |
|
3 |
|
itg10a.3 |
|
4 |
|
itg1ge0a.4 |
|
5 |
|
i1frn |
|
6 |
1 5
|
syl |
|
7 |
|
difss |
|
8 |
|
ssfi |
|
9 |
6 7 8
|
sylancl |
|
10 |
|
i1ff |
|
11 |
1 10
|
syl |
|
12 |
11
|
frnd |
|
13 |
12
|
ssdifssd |
|
14 |
13
|
sselda |
|
15 |
|
i1fima2sn |
|
16 |
1 15
|
sylan |
|
17 |
14 16
|
remulcld |
|
18 |
|
0le0 |
|
19 |
|
i1fima |
|
20 |
1 19
|
syl |
|
21 |
|
mblvol |
|
22 |
20 21
|
syl |
|
23 |
22
|
ad2antrr |
|
24 |
11
|
ffnd |
|
25 |
|
fniniseg |
|
26 |
24 25
|
syl |
|
27 |
26
|
ad2antrr |
|
28 |
|
simprl |
|
29 |
|
eldif |
|
30 |
4
|
ex |
|
31 |
30
|
ad2antrr |
|
32 |
|
simprr |
|
33 |
32
|
breq2d |
|
34 |
|
0red |
|
35 |
14
|
adantr |
|
36 |
34 35
|
lenltd |
|
37 |
33 36
|
bitrd |
|
38 |
31 37
|
sylibd |
|
39 |
29 38
|
syl5bir |
|
40 |
28 39
|
mpand |
|
41 |
40
|
con4d |
|
42 |
41
|
impancom |
|
43 |
27 42
|
sylbid |
|
44 |
43
|
ssrdv |
|
45 |
2
|
ad2antrr |
|
46 |
3
|
ad2antrr |
|
47 |
|
ovolssnul |
|
48 |
44 45 46 47
|
syl3anc |
|
49 |
23 48
|
eqtrd |
|
50 |
49
|
oveq2d |
|
51 |
14
|
recnd |
|
52 |
51
|
adantr |
|
53 |
52
|
mul01d |
|
54 |
50 53
|
eqtrd |
|
55 |
18 54
|
breqtrrid |
|
56 |
14
|
adantr |
|
57 |
16
|
adantr |
|
58 |
|
simpr |
|
59 |
20
|
ad2antrr |
|
60 |
|
mblss |
|
61 |
59 60
|
syl |
|
62 |
|
ovolge0 |
|
63 |
61 62
|
syl |
|
64 |
22
|
ad2antrr |
|
65 |
63 64
|
breqtrrd |
|
66 |
56 57 58 65
|
mulge0d |
|
67 |
|
0red |
|
68 |
55 66 14 67
|
ltlecasei |
|
69 |
9 17 68
|
fsumge0 |
|
70 |
|
itg1val |
|
71 |
1 70
|
syl |
|
72 |
69 71
|
breqtrrd |
|