| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg10a.1 |
|
| 2 |
|
itg10a.2 |
|
| 3 |
|
itg10a.3 |
|
| 4 |
|
itg1ge0a.4 |
|
| 5 |
|
i1frn |
|
| 6 |
1 5
|
syl |
|
| 7 |
|
difss |
|
| 8 |
|
ssfi |
|
| 9 |
6 7 8
|
sylancl |
|
| 10 |
|
i1ff |
|
| 11 |
1 10
|
syl |
|
| 12 |
11
|
frnd |
|
| 13 |
12
|
ssdifssd |
|
| 14 |
13
|
sselda |
|
| 15 |
|
i1fima2sn |
|
| 16 |
1 15
|
sylan |
|
| 17 |
14 16
|
remulcld |
|
| 18 |
|
0le0 |
|
| 19 |
|
i1fima |
|
| 20 |
1 19
|
syl |
|
| 21 |
|
mblvol |
|
| 22 |
20 21
|
syl |
|
| 23 |
22
|
ad2antrr |
|
| 24 |
11
|
ffnd |
|
| 25 |
|
fniniseg |
|
| 26 |
24 25
|
syl |
|
| 27 |
26
|
ad2antrr |
|
| 28 |
|
simprl |
|
| 29 |
|
eldif |
|
| 30 |
4
|
ex |
|
| 31 |
30
|
ad2antrr |
|
| 32 |
|
simprr |
|
| 33 |
32
|
breq2d |
|
| 34 |
|
0red |
|
| 35 |
14
|
adantr |
|
| 36 |
34 35
|
lenltd |
|
| 37 |
33 36
|
bitrd |
|
| 38 |
31 37
|
sylibd |
|
| 39 |
29 38
|
biimtrrid |
|
| 40 |
28 39
|
mpand |
|
| 41 |
40
|
con4d |
|
| 42 |
41
|
impancom |
|
| 43 |
27 42
|
sylbid |
|
| 44 |
43
|
ssrdv |
|
| 45 |
2
|
ad2antrr |
|
| 46 |
3
|
ad2antrr |
|
| 47 |
|
ovolssnul |
|
| 48 |
44 45 46 47
|
syl3anc |
|
| 49 |
23 48
|
eqtrd |
|
| 50 |
49
|
oveq2d |
|
| 51 |
14
|
recnd |
|
| 52 |
51
|
adantr |
|
| 53 |
52
|
mul01d |
|
| 54 |
50 53
|
eqtrd |
|
| 55 |
18 54
|
breqtrrid |
|
| 56 |
14
|
adantr |
|
| 57 |
16
|
adantr |
|
| 58 |
|
simpr |
|
| 59 |
20
|
ad2antrr |
|
| 60 |
|
mblss |
|
| 61 |
59 60
|
syl |
|
| 62 |
|
ovolge0 |
|
| 63 |
61 62
|
syl |
|
| 64 |
22
|
ad2antrr |
|
| 65 |
63 64
|
breqtrrd |
|
| 66 |
56 57 58 65
|
mulge0d |
|
| 67 |
|
0red |
|
| 68 |
55 66 14 67
|
ltlecasei |
|
| 69 |
9 17 68
|
fsumge0 |
|
| 70 |
|
itg1val |
|
| 71 |
1 70
|
syl |
|
| 72 |
69 71
|
breqtrrd |
|