Metamath Proof Explorer


Theorem itg1ge0a

Description: The integral of an almost positive simple function is positive. (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Hypotheses itg10a.1 φ F dom 1
itg10a.2 φ A
itg10a.3 φ vol * A = 0
itg1ge0a.4 φ x A 0 F x
Assertion itg1ge0a φ 0 1 F

Proof

Step Hyp Ref Expression
1 itg10a.1 φ F dom 1
2 itg10a.2 φ A
3 itg10a.3 φ vol * A = 0
4 itg1ge0a.4 φ x A 0 F x
5 i1frn F dom 1 ran F Fin
6 1 5 syl φ ran F Fin
7 difss ran F 0 ran F
8 ssfi ran F Fin ran F 0 ran F ran F 0 Fin
9 6 7 8 sylancl φ ran F 0 Fin
10 i1ff F dom 1 F :
11 1 10 syl φ F :
12 11 frnd φ ran F
13 12 ssdifssd φ ran F 0
14 13 sselda φ k ran F 0 k
15 i1fima2sn F dom 1 k ran F 0 vol F -1 k
16 1 15 sylan φ k ran F 0 vol F -1 k
17 14 16 remulcld φ k ran F 0 k vol F -1 k
18 0le0 0 0
19 i1fima F dom 1 F -1 k dom vol
20 1 19 syl φ F -1 k dom vol
21 mblvol F -1 k dom vol vol F -1 k = vol * F -1 k
22 20 21 syl φ vol F -1 k = vol * F -1 k
23 22 ad2antrr φ k ran F 0 k < 0 vol F -1 k = vol * F -1 k
24 11 ffnd φ F Fn
25 fniniseg F Fn x F -1 k x F x = k
26 24 25 syl φ x F -1 k x F x = k
27 26 ad2antrr φ k ran F 0 k < 0 x F -1 k x F x = k
28 simprl φ k ran F 0 x F x = k x
29 eldif x A x ¬ x A
30 4 ex φ x A 0 F x
31 30 ad2antrr φ k ran F 0 x F x = k x A 0 F x
32 simprr φ k ran F 0 x F x = k F x = k
33 32 breq2d φ k ran F 0 x F x = k 0 F x 0 k
34 0red φ k ran F 0 x F x = k 0
35 14 adantr φ k ran F 0 x F x = k k
36 34 35 lenltd φ k ran F 0 x F x = k 0 k ¬ k < 0
37 33 36 bitrd φ k ran F 0 x F x = k 0 F x ¬ k < 0
38 31 37 sylibd φ k ran F 0 x F x = k x A ¬ k < 0
39 29 38 syl5bir φ k ran F 0 x F x = k x ¬ x A ¬ k < 0
40 28 39 mpand φ k ran F 0 x F x = k ¬ x A ¬ k < 0
41 40 con4d φ k ran F 0 x F x = k k < 0 x A
42 41 impancom φ k ran F 0 k < 0 x F x = k x A
43 27 42 sylbid φ k ran F 0 k < 0 x F -1 k x A
44 43 ssrdv φ k ran F 0 k < 0 F -1 k A
45 2 ad2antrr φ k ran F 0 k < 0 A
46 3 ad2antrr φ k ran F 0 k < 0 vol * A = 0
47 ovolssnul F -1 k A A vol * A = 0 vol * F -1 k = 0
48 44 45 46 47 syl3anc φ k ran F 0 k < 0 vol * F -1 k = 0
49 23 48 eqtrd φ k ran F 0 k < 0 vol F -1 k = 0
50 49 oveq2d φ k ran F 0 k < 0 k vol F -1 k = k 0
51 14 recnd φ k ran F 0 k
52 51 adantr φ k ran F 0 k < 0 k
53 52 mul01d φ k ran F 0 k < 0 k 0 = 0
54 50 53 eqtrd φ k ran F 0 k < 0 k vol F -1 k = 0
55 18 54 breqtrrid φ k ran F 0 k < 0 0 k vol F -1 k
56 14 adantr φ k ran F 0 0 k k
57 16 adantr φ k ran F 0 0 k vol F -1 k
58 simpr φ k ran F 0 0 k 0 k
59 20 ad2antrr φ k ran F 0 0 k F -1 k dom vol
60 mblss F -1 k dom vol F -1 k
61 59 60 syl φ k ran F 0 0 k F -1 k
62 ovolge0 F -1 k 0 vol * F -1 k
63 61 62 syl φ k ran F 0 0 k 0 vol * F -1 k
64 22 ad2antrr φ k ran F 0 0 k vol F -1 k = vol * F -1 k
65 63 64 breqtrrd φ k ran F 0 0 k 0 vol F -1 k
66 56 57 58 65 mulge0d φ k ran F 0 0 k 0 k vol F -1 k
67 0red φ k ran F 0 0
68 55 66 14 67 ltlecasei φ k ran F 0 0 k vol F -1 k
69 9 17 68 fsumge0 φ 0 k ran F 0 k vol F -1 k
70 itg1val F dom 1 1 F = k ran F 0 k vol F -1 k
71 1 70 syl φ 1 F = k ran F 0 k vol F -1 k
72 69 71 breqtrrd φ 0 1 F