Description: The integral of an almost positive simple function is positive. (Contributed by Mario Carneiro, 11-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg10a.1 | |
|
| itg10a.2 | |
||
| itg10a.3 | |
||
| itg1ge0a.4 | |
||
| Assertion | itg1ge0a | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg10a.1 | |
|
| 2 | itg10a.2 | |
|
| 3 | itg10a.3 | |
|
| 4 | itg1ge0a.4 | |
|
| 5 | i1frn | |
|
| 6 | 1 5 | syl | |
| 7 | difss | |
|
| 8 | ssfi | |
|
| 9 | 6 7 8 | sylancl | |
| 10 | i1ff | |
|
| 11 | 1 10 | syl | |
| 12 | 11 | frnd | |
| 13 | 12 | ssdifssd | |
| 14 | 13 | sselda | |
| 15 | i1fima2sn | |
|
| 16 | 1 15 | sylan | |
| 17 | 14 16 | remulcld | |
| 18 | 0le0 | |
|
| 19 | i1fima | |
|
| 20 | 1 19 | syl | |
| 21 | mblvol | |
|
| 22 | 20 21 | syl | |
| 23 | 22 | ad2antrr | |
| 24 | 11 | ffnd | |
| 25 | fniniseg | |
|
| 26 | 24 25 | syl | |
| 27 | 26 | ad2antrr | |
| 28 | simprl | |
|
| 29 | eldif | |
|
| 30 | 4 | ex | |
| 31 | 30 | ad2antrr | |
| 32 | simprr | |
|
| 33 | 32 | breq2d | |
| 34 | 0red | |
|
| 35 | 14 | adantr | |
| 36 | 34 35 | lenltd | |
| 37 | 33 36 | bitrd | |
| 38 | 31 37 | sylibd | |
| 39 | 29 38 | biimtrrid | |
| 40 | 28 39 | mpand | |
| 41 | 40 | con4d | |
| 42 | 41 | impancom | |
| 43 | 27 42 | sylbid | |
| 44 | 43 | ssrdv | |
| 45 | 2 | ad2antrr | |
| 46 | 3 | ad2antrr | |
| 47 | ovolssnul | |
|
| 48 | 44 45 46 47 | syl3anc | |
| 49 | 23 48 | eqtrd | |
| 50 | 49 | oveq2d | |
| 51 | 14 | recnd | |
| 52 | 51 | adantr | |
| 53 | 52 | mul01d | |
| 54 | 50 53 | eqtrd | |
| 55 | 18 54 | breqtrrid | |
| 56 | 14 | adantr | |
| 57 | 16 | adantr | |
| 58 | simpr | |
|
| 59 | 20 | ad2antrr | |
| 60 | mblss | |
|
| 61 | 59 60 | syl | |
| 62 | ovolge0 | |
|
| 63 | 61 62 | syl | |
| 64 | 22 | ad2antrr | |
| 65 | 63 64 | breqtrrd | |
| 66 | 56 57 58 65 | mulge0d | |
| 67 | 0red | |
|
| 68 | 55 66 14 67 | ltlecasei | |
| 69 | 9 17 68 | fsumge0 | |
| 70 | itg1val | |
|
| 71 | 1 70 | syl | |
| 72 | 69 71 | breqtrrd | |