Metamath Proof Explorer


Theorem itg1le

Description: If one simple function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014) (Revised by Mario Carneiro, 6-Aug-2014)

Ref Expression
Assertion itg1le F dom 1 G dom 1 F f G 1 F 1 G

Proof

Step Hyp Ref Expression
1 simp1 F dom 1 G dom 1 F f G F dom 1
2 0ss
3 2 a1i F dom 1 G dom 1 F f G
4 ovol0 vol * = 0
5 4 a1i F dom 1 G dom 1 F f G vol * = 0
6 simp2 F dom 1 G dom 1 F f G G dom 1
7 simpl F dom 1 G dom 1 F dom 1
8 i1ff F dom 1 F :
9 ffn F : F Fn
10 7 8 9 3syl F dom 1 G dom 1 F Fn
11 simpr F dom 1 G dom 1 G dom 1
12 i1ff G dom 1 G :
13 ffn G : G Fn
14 11 12 13 3syl F dom 1 G dom 1 G Fn
15 reex V
16 15 a1i F dom 1 G dom 1 V
17 inidm =
18 eqidd F dom 1 G dom 1 x F x = F x
19 eqidd F dom 1 G dom 1 x G x = G x
20 10 14 16 16 17 18 19 ofrval F dom 1 G dom 1 F f G x F x G x
21 20 3exp F dom 1 G dom 1 F f G x F x G x
22 21 3impia F dom 1 G dom 1 F f G x F x G x
23 eldifi x x
24 22 23 impel F dom 1 G dom 1 F f G x F x G x
25 1 3 5 6 24 itg1lea F dom 1 G dom 1 F f G 1 F 1 G