| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg10a.1 |  | 
						
							| 2 |  | itg10a.2 |  | 
						
							| 3 |  | itg10a.3 |  | 
						
							| 4 |  | itg1lea.4 |  | 
						
							| 5 |  | itg1lea.5 |  | 
						
							| 6 |  | i1fsub |  | 
						
							| 7 | 4 1 6 | syl2anc |  | 
						
							| 8 |  | eldifi |  | 
						
							| 9 |  | i1ff |  | 
						
							| 10 | 4 9 | syl |  | 
						
							| 11 | 10 | ffvelcdmda |  | 
						
							| 12 |  | i1ff |  | 
						
							| 13 | 1 12 | syl |  | 
						
							| 14 | 13 | ffvelcdmda |  | 
						
							| 15 | 11 14 | subge0d |  | 
						
							| 16 | 8 15 | sylan2 |  | 
						
							| 17 | 5 16 | mpbird |  | 
						
							| 18 | 10 | ffnd |  | 
						
							| 19 | 13 | ffnd |  | 
						
							| 20 |  | reex |  | 
						
							| 21 | 20 | a1i |  | 
						
							| 22 |  | inidm |  | 
						
							| 23 |  | eqidd |  | 
						
							| 24 |  | eqidd |  | 
						
							| 25 | 18 19 21 21 22 23 24 | ofval |  | 
						
							| 26 | 8 25 | sylan2 |  | 
						
							| 27 | 17 26 | breqtrrd |  | 
						
							| 28 | 7 2 3 27 | itg1ge0a |  | 
						
							| 29 |  | itg1sub |  | 
						
							| 30 | 4 1 29 | syl2anc |  | 
						
							| 31 | 28 30 | breqtrd |  | 
						
							| 32 |  | itg1cl |  | 
						
							| 33 | 4 32 | syl |  | 
						
							| 34 |  | itg1cl |  | 
						
							| 35 | 1 34 | syl |  | 
						
							| 36 | 33 35 | subge0d |  | 
						
							| 37 | 31 36 | mpbid |  |