Metamath Proof Explorer


Theorem itg1lea

Description: Approximate version of itg1le . If F <_ G for almost all x , then S.1 F <_ S.1 G . (Contributed by Mario Carneiro, 28-Jun-2014) (Revised by Mario Carneiro, 6-Aug-2014)

Ref Expression
Hypotheses itg10a.1 φ F dom 1
itg10a.2 φ A
itg10a.3 φ vol * A = 0
itg1lea.4 φ G dom 1
itg1lea.5 φ x A F x G x
Assertion itg1lea φ 1 F 1 G

Proof

Step Hyp Ref Expression
1 itg10a.1 φ F dom 1
2 itg10a.2 φ A
3 itg10a.3 φ vol * A = 0
4 itg1lea.4 φ G dom 1
5 itg1lea.5 φ x A F x G x
6 i1fsub G dom 1 F dom 1 G f F dom 1
7 4 1 6 syl2anc φ G f F dom 1
8 eldifi x A x
9 i1ff G dom 1 G :
10 4 9 syl φ G :
11 10 ffvelrnda φ x G x
12 i1ff F dom 1 F :
13 1 12 syl φ F :
14 13 ffvelrnda φ x F x
15 11 14 subge0d φ x 0 G x F x F x G x
16 8 15 sylan2 φ x A 0 G x F x F x G x
17 5 16 mpbird φ x A 0 G x F x
18 10 ffnd φ G Fn
19 13 ffnd φ F Fn
20 reex V
21 20 a1i φ V
22 inidm =
23 eqidd φ x G x = G x
24 eqidd φ x F x = F x
25 18 19 21 21 22 23 24 ofval φ x G f F x = G x F x
26 8 25 sylan2 φ x A G f F x = G x F x
27 17 26 breqtrrd φ x A 0 G f F x
28 7 2 3 27 itg1ge0a φ 0 1 G f F
29 itg1sub G dom 1 F dom 1 1 G f F = 1 G 1 F
30 4 1 29 syl2anc φ 1 G f F = 1 G 1 F
31 28 30 breqtrd φ 0 1 G 1 F
32 itg1cl G dom 1 1 G
33 4 32 syl φ 1 G
34 itg1cl F dom 1 1 F
35 1 34 syl φ 1 F
36 33 35 subge0d φ 0 1 G 1 F 1 F 1 G
37 31 36 mpbid φ 1 F 1 G