Metamath Proof Explorer


Theorem itg1mulc

Description: The integral of a constant times a simple function is the constant times the original integral. (Contributed by Mario Carneiro, 25-Jun-2014)

Ref Expression
Hypotheses i1fmulc.2 φ F dom 1
i1fmulc.3 φ A
Assertion itg1mulc φ 1 × A × f F = A 1 F

Proof

Step Hyp Ref Expression
1 i1fmulc.2 φ F dom 1
2 i1fmulc.3 φ A
3 itg10 1 × 0 = 0
4 reex V
5 4 a1i φ A = 0 V
6 i1ff F dom 1 F :
7 1 6 syl φ F :
8 7 adantr φ A = 0 F :
9 2 adantr φ A = 0 A
10 0red φ A = 0 0
11 simplr φ A = 0 x A = 0
12 11 oveq1d φ A = 0 x A x = 0 x
13 mul02lem2 x 0 x = 0
14 13 adantl φ A = 0 x 0 x = 0
15 12 14 eqtrd φ A = 0 x A x = 0
16 5 8 9 10 15 caofid2 φ A = 0 × A × f F = × 0
17 16 fveq2d φ A = 0 1 × A × f F = 1 × 0
18 simpr φ A = 0 A = 0
19 18 oveq1d φ A = 0 A 1 F = 0 1 F
20 itg1cl F dom 1 1 F
21 1 20 syl φ 1 F
22 21 recnd φ 1 F
23 22 mul02d φ 0 1 F = 0
24 23 adantr φ A = 0 0 1 F = 0
25 19 24 eqtrd φ A = 0 A 1 F = 0
26 3 17 25 3eqtr4a φ A = 0 1 × A × f F = A 1 F
27 1 2 i1fmulc φ × A × f F dom 1
28 27 adantr φ A 0 × A × f F dom 1
29 i1ff × A × f F dom 1 × A × f F :
30 28 29 syl φ A 0 × A × f F :
31 30 frnd φ A 0 ran × A × f F
32 31 ssdifssd φ A 0 ran × A × f F 0
33 32 sselda φ A 0 m ran × A × f F 0 m
34 33 recnd φ A 0 m ran × A × f F 0 m
35 2 adantr φ A 0 A
36 35 recnd φ A 0 A
37 36 adantr φ A 0 m ran × A × f F 0 A
38 simplr φ A 0 m ran × A × f F 0 A 0
39 34 37 38 divcan2d φ A 0 m ran × A × f F 0 A m A = m
40 1 2 i1fmulclem φ A 0 m × A × f F -1 m = F -1 m A
41 33 40 syldan φ A 0 m ran × A × f F 0 × A × f F -1 m = F -1 m A
42 41 fveq2d φ A 0 m ran × A × f F 0 vol × A × f F -1 m = vol F -1 m A
43 42 eqcomd φ A 0 m ran × A × f F 0 vol F -1 m A = vol × A × f F -1 m
44 39 43 oveq12d φ A 0 m ran × A × f F 0 A m A vol F -1 m A = m vol × A × f F -1 m
45 2 ad2antrr φ A 0 m ran × A × f F 0 A
46 33 45 38 redivcld φ A 0 m ran × A × f F 0 m A
47 46 recnd φ A 0 m ran × A × f F 0 m A
48 1 ad2antrr φ A 0 m ran × A × f F 0 F dom 1
49 45 recnd φ A 0 m ran × A × f F 0 A
50 eldifsni m ran × A × f F 0 m 0
51 50 adantl φ A 0 m ran × A × f F 0 m 0
52 34 49 51 38 divne0d φ A 0 m ran × A × f F 0 m A 0
53 eldifsn m A 0 m A m A 0
54 46 52 53 sylanbrc φ A 0 m ran × A × f F 0 m A 0
55 i1fima2sn F dom 1 m A 0 vol F -1 m A
56 48 54 55 syl2anc φ A 0 m ran × A × f F 0 vol F -1 m A
57 56 recnd φ A 0 m ran × A × f F 0 vol F -1 m A
58 37 47 57 mulassd φ A 0 m ran × A × f F 0 A m A vol F -1 m A = A m A vol F -1 m A
59 44 58 eqtr3d φ A 0 m ran × A × f F 0 m vol × A × f F -1 m = A m A vol F -1 m A
60 59 sumeq2dv φ A 0 m ran × A × f F 0 m vol × A × f F -1 m = m ran × A × f F 0 A m A vol F -1 m A
61 i1frn × A × f F dom 1 ran × A × f F Fin
62 28 61 syl φ A 0 ran × A × f F Fin
63 difss ran × A × f F 0 ran × A × f F
64 ssfi ran × A × f F Fin ran × A × f F 0 ran × A × f F ran × A × f F 0 Fin
65 62 63 64 sylancl φ A 0 ran × A × f F 0 Fin
66 47 57 mulcld φ A 0 m ran × A × f F 0 m A vol F -1 m A
67 65 36 66 fsummulc2 φ A 0 A m ran × A × f F 0 m A vol F -1 m A = m ran × A × f F 0 A m A vol F -1 m A
68 60 67 eqtr4d φ A 0 m ran × A × f F 0 m vol × A × f F -1 m = A m ran × A × f F 0 m A vol F -1 m A
69 itg1val × A × f F dom 1 1 × A × f F = m ran × A × f F 0 m vol × A × f F -1 m
70 28 69 syl φ A 0 1 × A × f F = m ran × A × f F 0 m vol × A × f F -1 m
71 1 adantr φ A 0 F dom 1
72 itg1val F dom 1 1 F = k ran F 0 k vol F -1 k
73 71 72 syl φ A 0 1 F = k ran F 0 k vol F -1 k
74 id k = m A k = m A
75 sneq k = m A k = m A
76 75 imaeq2d k = m A F -1 k = F -1 m A
77 76 fveq2d k = m A vol F -1 k = vol F -1 m A
78 74 77 oveq12d k = m A k vol F -1 k = m A vol F -1 m A
79 eqid n ran × A × f F 0 n A = n ran × A × f F 0 n A
80 eldifi n ran × A × f F 0 n ran × A × f F
81 4 a1i φ V
82 7 ffnd φ F Fn
83 eqidd φ y F y = F y
84 81 2 82 83 ofc1 φ y × A × f F y = A F y
85 84 adantlr φ A 0 y × A × f F y = A F y
86 85 oveq1d φ A 0 y × A × f F y A = A F y A
87 7 adantr φ A 0 F :
88 87 ffvelrnda φ A 0 y F y
89 88 recnd φ A 0 y F y
90 36 adantr φ A 0 y A
91 simplr φ A 0 y A 0
92 89 90 91 divcan3d φ A 0 y A F y A = F y
93 86 92 eqtrd φ A 0 y × A × f F y A = F y
94 87 ffnd φ A 0 F Fn
95 fnfvelrn F Fn y F y ran F
96 94 95 sylan φ A 0 y F y ran F
97 93 96 eqeltrd φ A 0 y × A × f F y A ran F
98 97 ralrimiva φ A 0 y × A × f F y A ran F
99 30 ffnd φ A 0 × A × f F Fn
100 oveq1 n = × A × f F y n A = × A × f F y A
101 100 eleq1d n = × A × f F y n A ran F × A × f F y A ran F
102 101 ralrn × A × f F Fn n ran × A × f F n A ran F y × A × f F y A ran F
103 99 102 syl φ A 0 n ran × A × f F n A ran F y × A × f F y A ran F
104 98 103 mpbird φ A 0 n ran × A × f F n A ran F
105 104 r19.21bi φ A 0 n ran × A × f F n A ran F
106 80 105 sylan2 φ A 0 n ran × A × f F 0 n A ran F
107 32 sselda φ A 0 n ran × A × f F 0 n
108 107 recnd φ A 0 n ran × A × f F 0 n
109 36 adantr φ A 0 n ran × A × f F 0 A
110 eldifsni n ran × A × f F 0 n 0
111 110 adantl φ A 0 n ran × A × f F 0 n 0
112 simplr φ A 0 n ran × A × f F 0 A 0
113 108 109 111 112 divne0d φ A 0 n ran × A × f F 0 n A 0
114 eldifsn n A ran F 0 n A ran F n A 0
115 106 113 114 sylanbrc φ A 0 n ran × A × f F 0 n A ran F 0
116 eldifi k ran F 0 k ran F
117 fnfvelrn × A × f F Fn y × A × f F y ran × A × f F
118 99 117 sylan φ A 0 y × A × f F y ran × A × f F
119 85 118 eqeltrrd φ A 0 y A F y ran × A × f F
120 119 ralrimiva φ A 0 y A F y ran × A × f F
121 oveq2 k = F y A k = A F y
122 121 eleq1d k = F y A k ran × A × f F A F y ran × A × f F
123 122 ralrn F Fn k ran F A k ran × A × f F y A F y ran × A × f F
124 94 123 syl φ A 0 k ran F A k ran × A × f F y A F y ran × A × f F
125 120 124 mpbird φ A 0 k ran F A k ran × A × f F
126 125 r19.21bi φ A 0 k ran F A k ran × A × f F
127 116 126 sylan2 φ A 0 k ran F 0 A k ran × A × f F
128 36 adantr φ A 0 k ran F 0 A
129 87 frnd φ A 0 ran F
130 129 ssdifssd φ A 0 ran F 0
131 130 sselda φ A 0 k ran F 0 k
132 131 recnd φ A 0 k ran F 0 k
133 simplr φ A 0 k ran F 0 A 0
134 eldifsni k ran F 0 k 0
135 134 adantl φ A 0 k ran F 0 k 0
136 128 132 133 135 mulne0d φ A 0 k ran F 0 A k 0
137 eldifsn A k ran × A × f F 0 A k ran × A × f F A k 0
138 127 136 137 sylanbrc φ A 0 k ran F 0 A k ran × A × f F 0
139 simpl n ran × A × f F 0 k ran F 0 n ran × A × f F 0
140 ssel2 ran × A × f F 0 n ran × A × f F 0 n
141 32 139 140 syl2an φ A 0 n ran × A × f F 0 k ran F 0 n
142 141 recnd φ A 0 n ran × A × f F 0 k ran F 0 n
143 2 ad2antrr φ A 0 n ran × A × f F 0 k ran F 0 A
144 143 recnd φ A 0 n ran × A × f F 0 k ran F 0 A
145 131 adantrl φ A 0 n ran × A × f F 0 k ran F 0 k
146 145 recnd φ A 0 n ran × A × f F 0 k ran F 0 k
147 simplr φ A 0 n ran × A × f F 0 k ran F 0 A 0
148 142 144 146 147 divmuld φ A 0 n ran × A × f F 0 k ran F 0 n A = k A k = n
149 148 bicomd φ A 0 n ran × A × f F 0 k ran F 0 A k = n n A = k
150 eqcom n = A k A k = n
151 eqcom k = n A n A = k
152 149 150 151 3bitr4g φ A 0 n ran × A × f F 0 k ran F 0 n = A k k = n A
153 79 115 138 152 f1o2d φ A 0 n ran × A × f F 0 n A : ran × A × f F 0 1-1 onto ran F 0
154 oveq1 n = m n A = m A
155 ovex m A V
156 154 79 155 fvmpt m ran × A × f F 0 n ran × A × f F 0 n A m = m A
157 156 adantl φ A 0 m ran × A × f F 0 n ran × A × f F 0 n A m = m A
158 i1fima2sn F dom 1 k ran F 0 vol F -1 k
159 71 158 sylan φ A 0 k ran F 0 vol F -1 k
160 131 159 remulcld φ A 0 k ran F 0 k vol F -1 k
161 160 recnd φ A 0 k ran F 0 k vol F -1 k
162 78 65 153 157 161 fsumf1o φ A 0 k ran F 0 k vol F -1 k = m ran × A × f F 0 m A vol F -1 m A
163 73 162 eqtrd φ A 0 1 F = m ran × A × f F 0 m A vol F -1 m A
164 163 oveq2d φ A 0 A 1 F = A m ran × A × f F 0 m A vol F -1 m A
165 68 70 164 3eqtr4d φ A 0 1 × A × f F = A 1 F
166 26 165 pm2.61dane φ 1 × A × f F = A 1 F