Metamath Proof Explorer


Theorem itg1sub

Description: The integral of a difference of two simple functions. (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Assertion itg1sub F dom 1 G dom 1 1 F f G = 1 F 1 G

Proof

Step Hyp Ref Expression
1 simpl F dom 1 G dom 1 F dom 1
2 simpr F dom 1 G dom 1 G dom 1
3 neg1rr 1
4 3 a1i F dom 1 G dom 1 1
5 2 4 i1fmulc F dom 1 G dom 1 × 1 × f G dom 1
6 1 5 itg1add F dom 1 G dom 1 1 F + f × 1 × f G = 1 F + 1 × 1 × f G
7 2 4 itg1mulc F dom 1 G dom 1 1 × 1 × f G = -1 1 G
8 itg1cl G dom 1 1 G
9 8 recnd G dom 1 1 G
10 2 9 syl F dom 1 G dom 1 1 G
11 10 mulm1d F dom 1 G dom 1 -1 1 G = 1 G
12 7 11 eqtrd F dom 1 G dom 1 1 × 1 × f G = 1 G
13 12 oveq2d F dom 1 G dom 1 1 F + 1 × 1 × f G = 1 F + 1 G
14 6 13 eqtrd F dom 1 G dom 1 1 F + f × 1 × f G = 1 F + 1 G
15 reex V
16 i1ff F dom 1 F :
17 ax-resscn
18 fss F : F :
19 16 17 18 sylancl F dom 1 F :
20 i1ff G dom 1 G :
21 fss G : G :
22 20 17 21 sylancl G dom 1 G :
23 ofnegsub V F : G : F + f × 1 × f G = F f G
24 15 19 22 23 mp3an3an F dom 1 G dom 1 F + f × 1 × f G = F f G
25 24 fveq2d F dom 1 G dom 1 1 F + f × 1 × f G = 1 F f G
26 itg1cl F dom 1 1 F
27 26 recnd F dom 1 1 F
28 negsub 1 F 1 G 1 F + 1 G = 1 F 1 G
29 27 9 28 syl2an F dom 1 G dom 1 1 F + 1 G = 1 F 1 G
30 14 25 29 3eqtr3d F dom 1 G dom 1 1 F f G = 1 F 1 G