Metamath Proof Explorer


Theorem itg1val

Description: The value of the integral on simple functions. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Assertion itg1val F dom 1 1 F = x ran F 0 x vol F -1 x

Proof

Step Hyp Ref Expression
1 rneq f = F ran f = ran F
2 1 difeq1d f = F ran f 0 = ran F 0
3 cnveq f = F f -1 = F -1
4 3 imaeq1d f = F f -1 x = F -1 x
5 4 fveq2d f = F vol f -1 x = vol F -1 x
6 5 oveq2d f = F x vol f -1 x = x vol F -1 x
7 6 adantr f = F x ran f 0 x vol f -1 x = x vol F -1 x
8 2 7 sumeq12dv f = F x ran f 0 x vol f -1 x = x ran F 0 x vol F -1 x
9 df-itg1 1 = f g MblFn | g : ran g Fin vol g -1 0 x ran f 0 x vol f -1 x
10 sumex x ran F 0 x vol F -1 x V
11 8 9 10 fvmpt F g MblFn | g : ran g Fin vol g -1 0 1 F = x ran F 0 x vol F -1 x
12 sumex x ran f 0 x vol f -1 x V
13 12 9 dmmpti dom 1 = g MblFn | g : ran g Fin vol g -1 0
14 11 13 eleq2s F dom 1 1 F = x ran F 0 x vol F -1 x