Step |
Hyp |
Ref |
Expression |
1 |
|
itg1val |
|
2 |
1
|
adantr |
|
3 |
|
simpr2 |
|
4 |
3
|
sselda |
|
5 |
|
simpr3 |
|
6 |
5
|
sselda |
|
7 |
|
eldifi |
|
8 |
6 7
|
syl |
|
9 |
|
i1fima2sn |
|
10 |
9
|
adantlr |
|
11 |
6 10
|
syldan |
|
12 |
8 11
|
remulcld |
|
13 |
12
|
recnd |
|
14 |
4 13
|
syldan |
|
15 |
|
i1ff |
|
16 |
15
|
ad2antrr |
|
17 |
|
ffrn |
|
18 |
16 17
|
syl |
|
19 |
|
eldifn |
|
20 |
19
|
adantl |
|
21 |
|
eldif |
|
22 |
|
simplr3 |
|
23 |
22
|
ssdifssd |
|
24 |
|
simpr |
|
25 |
23 24
|
sseldd |
|
26 |
|
eldifn |
|
27 |
25 26
|
syl |
|
28 |
27
|
biantrud |
|
29 |
21 28
|
bitr4id |
|
30 |
20 29
|
mtbid |
|
31 |
|
disjsn |
|
32 |
30 31
|
sylibr |
|
33 |
|
fimacnvdisj |
|
34 |
18 32 33
|
syl2anc |
|
35 |
34
|
fveq2d |
|
36 |
|
0mbl |
|
37 |
|
mblvol |
|
38 |
36 37
|
ax-mp |
|
39 |
|
ovol0 |
|
40 |
38 39
|
eqtri |
|
41 |
35 40
|
eqtrdi |
|
42 |
41
|
oveq2d |
|
43 |
|
eldifi |
|
44 |
43 8
|
sylan2 |
|
45 |
44
|
recnd |
|
46 |
45
|
mul01d |
|
47 |
42 46
|
eqtrd |
|
48 |
|
simpr1 |
|
49 |
3 14 47 48
|
fsumss |
|
50 |
2 49
|
eqtrd |
|