Metamath Proof Explorer


Theorem itg1val2

Description: The value of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion itg1val2 F dom 1 A Fin ran F 0 A A 0 1 F = x A x vol F -1 x

Proof

Step Hyp Ref Expression
1 itg1val F dom 1 1 F = x ran F 0 x vol F -1 x
2 1 adantr F dom 1 A Fin ran F 0 A A 0 1 F = x ran F 0 x vol F -1 x
3 simpr2 F dom 1 A Fin ran F 0 A A 0 ran F 0 A
4 3 sselda F dom 1 A Fin ran F 0 A A 0 x ran F 0 x A
5 simpr3 F dom 1 A Fin ran F 0 A A 0 A 0
6 5 sselda F dom 1 A Fin ran F 0 A A 0 x A x 0
7 eldifi x 0 x
8 6 7 syl F dom 1 A Fin ran F 0 A A 0 x A x
9 i1fima2sn F dom 1 x 0 vol F -1 x
10 9 adantlr F dom 1 A Fin ran F 0 A A 0 x 0 vol F -1 x
11 6 10 syldan F dom 1 A Fin ran F 0 A A 0 x A vol F -1 x
12 8 11 remulcld F dom 1 A Fin ran F 0 A A 0 x A x vol F -1 x
13 12 recnd F dom 1 A Fin ran F 0 A A 0 x A x vol F -1 x
14 4 13 syldan F dom 1 A Fin ran F 0 A A 0 x ran F 0 x vol F -1 x
15 i1ff F dom 1 F :
16 15 ad2antrr F dom 1 A Fin ran F 0 A A 0 x A ran F 0 F :
17 ffrn F : F : ran F
18 16 17 syl F dom 1 A Fin ran F 0 A A 0 x A ran F 0 F : ran F
19 eldifn x A ran F 0 ¬ x ran F 0
20 19 adantl F dom 1 A Fin ran F 0 A A 0 x A ran F 0 ¬ x ran F 0
21 eldif x ran F 0 x ran F ¬ x 0
22 simplr3 F dom 1 A Fin ran F 0 A A 0 x A ran F 0 A 0
23 22 ssdifssd F dom 1 A Fin ran F 0 A A 0 x A ran F 0 A ran F 0 0
24 simpr F dom 1 A Fin ran F 0 A A 0 x A ran F 0 x A ran F 0
25 23 24 sseldd F dom 1 A Fin ran F 0 A A 0 x A ran F 0 x 0
26 eldifn x 0 ¬ x 0
27 25 26 syl F dom 1 A Fin ran F 0 A A 0 x A ran F 0 ¬ x 0
28 27 biantrud F dom 1 A Fin ran F 0 A A 0 x A ran F 0 x ran F x ran F ¬ x 0
29 21 28 bitr4id F dom 1 A Fin ran F 0 A A 0 x A ran F 0 x ran F 0 x ran F
30 20 29 mtbid F dom 1 A Fin ran F 0 A A 0 x A ran F 0 ¬ x ran F
31 disjsn ran F x = ¬ x ran F
32 30 31 sylibr F dom 1 A Fin ran F 0 A A 0 x A ran F 0 ran F x =
33 fimacnvdisj F : ran F ran F x = F -1 x =
34 18 32 33 syl2anc F dom 1 A Fin ran F 0 A A 0 x A ran F 0 F -1 x =
35 34 fveq2d F dom 1 A Fin ran F 0 A A 0 x A ran F 0 vol F -1 x = vol
36 0mbl dom vol
37 mblvol dom vol vol = vol *
38 36 37 ax-mp vol = vol *
39 ovol0 vol * = 0
40 38 39 eqtri vol = 0
41 35 40 eqtrdi F dom 1 A Fin ran F 0 A A 0 x A ran F 0 vol F -1 x = 0
42 41 oveq2d F dom 1 A Fin ran F 0 A A 0 x A ran F 0 x vol F -1 x = x 0
43 eldifi x A ran F 0 x A
44 43 8 sylan2 F dom 1 A Fin ran F 0 A A 0 x A ran F 0 x
45 44 recnd F dom 1 A Fin ran F 0 A A 0 x A ran F 0 x
46 45 mul01d F dom 1 A Fin ran F 0 A A 0 x A ran F 0 x 0 = 0
47 42 46 eqtrd F dom 1 A Fin ran F 0 A A 0 x A ran F 0 x vol F -1 x = 0
48 simpr1 F dom 1 A Fin ran F 0 A A 0 A Fin
49 3 14 47 48 fsumss F dom 1 A Fin ran F 0 A A 0 x ran F 0 x vol F -1 x = x A x vol F -1 x
50 2 49 eqtrd F dom 1 A Fin ran F 0 A A 0 1 F = x A x vol F -1 x