Metamath Proof Explorer


Theorem itg20

Description: The integral of the zero function. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion itg20 2 × 0 = 0

Proof

Step Hyp Ref Expression
1 i1f0 × 0 dom 1
2 reex V
3 2 a1i V
4 i1ff × 0 dom 1 × 0 :
5 1 4 mp1i × 0 :
6 leid x x x
7 6 adantl x x x
8 3 5 7 caofref × 0 f × 0
9 ax-resscn
10 9 a1i
11 5 ffnd × 0 Fn
12 10 11 0pledm 0 𝑝 f × 0 × 0 f × 0
13 8 12 mpbird 0 𝑝 f × 0
14 13 mptru 0 𝑝 f × 0
15 itg2itg1 × 0 dom 1 0 𝑝 f × 0 2 × 0 = 1 × 0
16 1 14 15 mp2an 2 × 0 = 1 × 0
17 itg10 1 × 0 = 0
18 16 17 eqtri 2 × 0 = 0