Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue integration
Lesbesgue integral
itg20
Next ⟩
itg2lecl
Metamath Proof Explorer
Ascii
Unicode
Theorem
itg20
Description:
The integral of the zero function.
(Contributed by
Mario Carneiro
, 28-Jun-2014)
Ref
Expression
Assertion
itg20
⊢
∫
2
⁡
ℝ
×
0
=
0
Proof
Step
Hyp
Ref
Expression
1
i1f0
⊢
ℝ
×
0
∈
dom
⁡
∫
1
2
reex
⊢
ℝ
∈
V
3
2
a1i
⊢
⊤
→
ℝ
∈
V
4
i1ff
⊢
ℝ
×
0
∈
dom
⁡
∫
1
→
ℝ
×
0
:
ℝ
⟶
ℝ
5
1
4
mp1i
⊢
⊤
→
ℝ
×
0
:
ℝ
⟶
ℝ
6
leid
⊢
x
∈
ℝ
→
x
≤
x
7
6
adantl
⊢
⊤
∧
x
∈
ℝ
→
x
≤
x
8
3
5
7
caofref
⊢
⊤
→
ℝ
×
0
≤
f
ℝ
×
0
9
ax-resscn
⊢
ℝ
⊆
ℂ
10
9
a1i
⊢
⊤
→
ℝ
⊆
ℂ
11
5
ffnd
⊢
⊤
→
ℝ
×
0
Fn
ℝ
12
10
11
0pledm
⊢
⊤
→
0
𝑝
≤
f
ℝ
×
0
↔
ℝ
×
0
≤
f
ℝ
×
0
13
8
12
mpbird
⊢
⊤
→
0
𝑝
≤
f
ℝ
×
0
14
13
mptru
⊢
0
𝑝
≤
f
ℝ
×
0
15
itg2itg1
⊢
ℝ
×
0
∈
dom
⁡
∫
1
∧
0
𝑝
≤
f
ℝ
×
0
→
∫
2
⁡
ℝ
×
0
=
∫
1
⁡
ℝ
×
0
16
1
14
15
mp2an
⊢
∫
2
⁡
ℝ
×
0
=
∫
1
⁡
ℝ
×
0
17
itg10
⊢
∫
1
⁡
ℝ
×
0
=
0
18
16
17
eqtri
⊢
∫
2
⁡
ℝ
×
0
=
0