Metamath Proof Explorer


Theorem itg2add

Description: The S.2 integral is linear. (Measurability is an essential component of this theorem; otherwise consider the characteristic function of a nonmeasurable set and its complement.) (Contributed by Mario Carneiro, 17-Aug-2014)

Ref Expression
Hypotheses itg2add.f1 φ F MblFn
itg2add.f2 φ F : 0 +∞
itg2add.f3 φ 2 F
itg2add.g1 φ G MblFn
itg2add.g2 φ G : 0 +∞
itg2add.g3 φ 2 G
Assertion itg2add φ 2 F + f G = 2 F + 2 G

Proof

Step Hyp Ref Expression
1 itg2add.f1 φ F MblFn
2 itg2add.f2 φ F : 0 +∞
3 itg2add.f3 φ 2 F
4 itg2add.g1 φ G MblFn
5 itg2add.g2 φ G : 0 +∞
6 itg2add.g3 φ 2 G
7 1 2 mbfi1fseq φ f f : dom 1 n 0 𝑝 f f n f n f f n + 1 x n f n x F x
8 4 5 mbfi1fseq φ g g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x G x
9 exdistrv f g f : dom 1 n 0 𝑝 f f n f n f f n + 1 x n f n x F x g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x G x f f : dom 1 n 0 𝑝 f f n f n f f n + 1 x n f n x F x g g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x G x
10 1 adantr φ f : dom 1 n 0 𝑝 f f n f n f f n + 1 x n f n x F x g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x G x F MblFn
11 2 adantr φ f : dom 1 n 0 𝑝 f f n f n f f n + 1 x n f n x F x g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x G x F : 0 +∞
12 3 adantr φ f : dom 1 n 0 𝑝 f f n f n f f n + 1 x n f n x F x g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x G x 2 F
13 4 adantr φ f : dom 1 n 0 𝑝 f f n f n f f n + 1 x n f n x F x g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x G x G MblFn
14 5 adantr φ f : dom 1 n 0 𝑝 f f n f n f f n + 1 x n f n x F x g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x G x G : 0 +∞
15 6 adantr φ f : dom 1 n 0 𝑝 f f n f n f f n + 1 x n f n x F x g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x G x 2 G
16 simprl1 φ f : dom 1 n 0 𝑝 f f n f n f f n + 1 x n f n x F x g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x G x f : dom 1
17 simprl2 φ f : dom 1 n 0 𝑝 f f n f n f f n + 1 x n f n x F x g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x G x n 0 𝑝 f f n f n f f n + 1
18 simprl3 φ f : dom 1 n 0 𝑝 f f n f n f f n + 1 x n f n x F x g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x G x x n f n x F x
19 simprr1 φ f : dom 1 n 0 𝑝 f f n f n f f n + 1 x n f n x F x g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x G x g : dom 1
20 simprr2 φ f : dom 1 n 0 𝑝 f f n f n f f n + 1 x n f n x F x g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x G x n 0 𝑝 f g n g n f g n + 1
21 simprr3 φ f : dom 1 n 0 𝑝 f f n f n f f n + 1 x n f n x F x g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x G x x n g n x G x
22 10 11 12 13 14 15 16 17 18 19 20 21 itg2addlem φ f : dom 1 n 0 𝑝 f f n f n f f n + 1 x n f n x F x g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x G x 2 F + f G = 2 F + 2 G
23 22 ex φ f : dom 1 n 0 𝑝 f f n f n f f n + 1 x n f n x F x g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x G x 2 F + f G = 2 F + 2 G
24 23 exlimdvv φ f g f : dom 1 n 0 𝑝 f f n f n f f n + 1 x n f n x F x g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x G x 2 F + f G = 2 F + 2 G
25 9 24 syl5bir φ f f : dom 1 n 0 𝑝 f f n f n f f n + 1 x n f n x F x g g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x G x 2 F + f G = 2 F + 2 G
26 7 8 25 mp2and φ 2 F + f G = 2 F + 2 G