Metamath Proof Explorer


Theorem itg2cl

Description: The integral of a nonnegative real function is an extended real number. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion itg2cl F : 0 +∞ 2 F *

Proof

Step Hyp Ref Expression
1 eqid x | g dom 1 g f F x = 1 g = x | g dom 1 g f F x = 1 g
2 1 itg2val F : 0 +∞ 2 F = sup x | g dom 1 g f F x = 1 g * <
3 1 itg2lcl x | g dom 1 g f F x = 1 g *
4 supxrcl x | g dom 1 g f F x = 1 g * sup x | g dom 1 g f F x = 1 g * < *
5 3 4 ax-mp sup x | g dom 1 g f F x = 1 g * < *
6 2 5 eqeltrdi F : 0 +∞ 2 F *