Step |
Hyp |
Ref |
Expression |
1 |
|
itg2cn.1 |
|
2 |
|
itg2cn.2 |
|
3 |
|
itg2cn.3 |
|
4 |
|
itg2cn.4 |
|
5 |
4
|
rphalfcld |
|
6 |
3 5
|
ltsubrpd |
|
7 |
5
|
rpred |
|
8 |
3 7
|
resubcld |
|
9 |
8 3
|
ltnled |
|
10 |
6 9
|
mpbid |
|
11 |
1
|
ffvelrnda |
|
12 |
|
elrege0 |
|
13 |
11 12
|
sylib |
|
14 |
13
|
simpld |
|
15 |
14
|
rexrd |
|
16 |
13
|
simprd |
|
17 |
|
elxrge0 |
|
18 |
15 16 17
|
sylanbrc |
|
19 |
|
0e0iccpnf |
|
20 |
|
ifcl |
|
21 |
18 19 20
|
sylancl |
|
22 |
21
|
adantlr |
|
23 |
22
|
fmpttd |
|
24 |
|
itg2cl |
|
25 |
23 24
|
syl |
|
26 |
25
|
fmpttd |
|
27 |
26
|
frnd |
|
28 |
8
|
rexrd |
|
29 |
|
supxrleub |
|
30 |
27 28 29
|
syl2anc |
|
31 |
1 2 3
|
itg2cnlem1 |
|
32 |
31
|
breq1d |
|
33 |
26
|
ffnd |
|
34 |
|
breq1 |
|
35 |
34
|
ralrn |
|
36 |
|
breq2 |
|
37 |
36
|
ifbid |
|
38 |
37
|
mpteq2dv |
|
39 |
38
|
fveq2d |
|
40 |
|
eqid |
|
41 |
|
fvex |
|
42 |
39 40 41
|
fvmpt |
|
43 |
42
|
breq1d |
|
44 |
43
|
ralbiia |
|
45 |
35 44
|
bitrdi |
|
46 |
33 45
|
syl |
|
47 |
30 32 46
|
3bitr3d |
|
48 |
10 47
|
mtbid |
|
49 |
|
rexnal |
|
50 |
48 49
|
sylibr |
|
51 |
1
|
adantr |
|
52 |
2
|
adantr |
|
53 |
3
|
adantr |
|
54 |
4
|
adantr |
|
55 |
|
simprl |
|
56 |
|
simprr |
|
57 |
|
fveq2 |
|
58 |
57
|
breq1d |
|
59 |
58 57
|
ifbieq1d |
|
60 |
59
|
cbvmptv |
|
61 |
60
|
fveq2i |
|
62 |
61
|
breq1i |
|
63 |
56 62
|
sylnib |
|
64 |
51 52 53 54 55 63
|
itg2cnlem2 |
|
65 |
|
elequ1 |
|
66 |
65 57
|
ifbieq1d |
|
67 |
66
|
cbvmptv |
|
68 |
67
|
fveq2i |
|
69 |
68
|
breq1i |
|
70 |
69
|
imbi2i |
|
71 |
70
|
ralbii |
|
72 |
71
|
rexbii |
|
73 |
64 72
|
sylibr |
|
74 |
50 73
|
rexlimddv |
|