Metamath Proof Explorer


Theorem itg2cnlem2

Description: Lemma for itgcn . (Contributed by Mario Carneiro, 31-Aug-2014)

Ref Expression
Hypotheses itg2cn.1 φ F : 0 +∞
itg2cn.2 φ F MblFn
itg2cn.3 φ 2 F
itg2cn.4 φ C +
itg2cn.5 φ M
itg2cn.6 φ ¬ 2 x if F x M F x 0 2 F C 2
Assertion itg2cnlem2 φ d + u dom vol vol u < d 2 x if x u F x 0 < C

Proof

Step Hyp Ref Expression
1 itg2cn.1 φ F : 0 +∞
2 itg2cn.2 φ F MblFn
3 itg2cn.3 φ 2 F
4 itg2cn.4 φ C +
5 itg2cn.5 φ M
6 itg2cn.6 φ ¬ 2 x if F x M F x 0 2 F C 2
7 4 rphalfcld φ C 2 +
8 5 nnrpd φ M +
9 7 8 rpdivcld φ C 2 M +
10 simprl φ u dom vol vol u < C 2 M u dom vol
11 2 adantr φ u dom vol vol u < C 2 M F MblFn
12 rge0ssre 0 +∞
13 fss F : 0 +∞ 0 +∞ F :
14 1 12 13 sylancl φ F :
15 14 adantr φ u dom vol vol u < C 2 M F :
16 mbfima F MblFn F : F -1 M +∞ dom vol
17 11 15 16 syl2anc φ u dom vol vol u < C 2 M F -1 M +∞ dom vol
18 inmbl u dom vol F -1 M +∞ dom vol u F -1 M +∞ dom vol
19 10 17 18 syl2anc φ u dom vol vol u < C 2 M u F -1 M +∞ dom vol
20 difmbl u dom vol F -1 M +∞ dom vol u F -1 M +∞ dom vol
21 10 17 20 syl2anc φ u dom vol vol u < C 2 M u F -1 M +∞ dom vol
22 inass u F -1 M +∞ u F -1 M +∞ = u F -1 M +∞ u F -1 M +∞
23 disjdif F -1 M +∞ u F -1 M +∞ =
24 23 ineq2i u F -1 M +∞ u F -1 M +∞ = u
25 in0 u =
26 22 24 25 3eqtri u F -1 M +∞ u F -1 M +∞ =
27 26 fveq2i vol * u F -1 M +∞ u F -1 M +∞ = vol *
28 ovol0 vol * = 0
29 27 28 eqtri vol * u F -1 M +∞ u F -1 M +∞ = 0
30 29 a1i φ u dom vol vol u < C 2 M vol * u F -1 M +∞ u F -1 M +∞ = 0
31 inundif u F -1 M +∞ u F -1 M +∞ = u
32 31 eqcomi u = u F -1 M +∞ u F -1 M +∞
33 32 a1i φ u dom vol vol u < C 2 M u = u F -1 M +∞ u F -1 M +∞
34 mblss u dom vol u
35 10 34 syl φ u dom vol vol u < C 2 M u
36 35 sselda φ u dom vol vol u < C 2 M x u x
37 1 adantr φ u dom vol vol u < C 2 M F : 0 +∞
38 37 ffvelrnda φ u dom vol vol u < C 2 M x F x 0 +∞
39 elrege0 F x 0 +∞ F x 0 F x
40 38 39 sylib φ u dom vol vol u < C 2 M x F x 0 F x
41 40 simpld φ u dom vol vol u < C 2 M x F x
42 41 rexrd φ u dom vol vol u < C 2 M x F x *
43 40 simprd φ u dom vol vol u < C 2 M x 0 F x
44 elxrge0 F x 0 +∞ F x * 0 F x
45 42 43 44 sylanbrc φ u dom vol vol u < C 2 M x F x 0 +∞
46 36 45 syldan φ u dom vol vol u < C 2 M x u F x 0 +∞
47 eqid x if x u F -1 M +∞ F x 0 = x if x u F -1 M +∞ F x 0
48 eqid x if x u F -1 M +∞ F x 0 = x if x u F -1 M +∞ F x 0
49 eqid x if x u F x 0 = x if x u F x 0
50 0e0iccpnf 0 0 +∞
51 ifcl F x 0 +∞ 0 0 +∞ if x u F -1 M +∞ F x 0 0 +∞
52 45 50 51 sylancl φ u dom vol vol u < C 2 M x if x u F -1 M +∞ F x 0 0 +∞
53 52 fmpttd φ u dom vol vol u < C 2 M x if x u F -1 M +∞ F x 0 : 0 +∞
54 3 adantr φ u dom vol vol u < C 2 M 2 F
55 icossicc 0 +∞ 0 +∞
56 fss F : 0 +∞ 0 +∞ 0 +∞ F : 0 +∞
57 37 55 56 sylancl φ u dom vol vol u < C 2 M F : 0 +∞
58 41 leidd φ u dom vol vol u < C 2 M x F x F x
59 breq1 F x = if x u F -1 M +∞ F x 0 F x F x if x u F -1 M +∞ F x 0 F x
60 breq1 0 = if x u F -1 M +∞ F x 0 0 F x if x u F -1 M +∞ F x 0 F x
61 59 60 ifboth F x F x 0 F x if x u F -1 M +∞ F x 0 F x
62 58 43 61 syl2anc φ u dom vol vol u < C 2 M x if x u F -1 M +∞ F x 0 F x
63 62 ralrimiva φ u dom vol vol u < C 2 M x if x u F -1 M +∞ F x 0 F x
64 reex V
65 64 a1i φ u dom vol vol u < C 2 M V
66 eqidd φ u dom vol vol u < C 2 M x if x u F -1 M +∞ F x 0 = x if x u F -1 M +∞ F x 0
67 37 feqmptd φ u dom vol vol u < C 2 M F = x F x
68 65 52 41 66 67 ofrfval2 φ u dom vol vol u < C 2 M x if x u F -1 M +∞ F x 0 f F x if x u F -1 M +∞ F x 0 F x
69 63 68 mpbird φ u dom vol vol u < C 2 M x if x u F -1 M +∞ F x 0 f F
70 itg2le x if x u F -1 M +∞ F x 0 : 0 +∞ F : 0 +∞ x if x u F -1 M +∞ F x 0 f F 2 x if x u F -1 M +∞ F x 0 2 F
71 53 57 69 70 syl3anc φ u dom vol vol u < C 2 M 2 x if x u F -1 M +∞ F x 0 2 F
72 itg2lecl x if x u F -1 M +∞ F x 0 : 0 +∞ 2 F 2 x if x u F -1 M +∞ F x 0 2 F 2 x if x u F -1 M +∞ F x 0
73 53 54 71 72 syl3anc φ u dom vol vol u < C 2 M 2 x if x u F -1 M +∞ F x 0
74 ifcl F x 0 +∞ 0 0 +∞ if x u F -1 M +∞ F x 0 0 +∞
75 45 50 74 sylancl φ u dom vol vol u < C 2 M x if x u F -1 M +∞ F x 0 0 +∞
76 75 fmpttd φ u dom vol vol u < C 2 M x if x u F -1 M +∞ F x 0 : 0 +∞
77 breq1 F x = if x u F -1 M +∞ F x 0 F x F x if x u F -1 M +∞ F x 0 F x
78 breq1 0 = if x u F -1 M +∞ F x 0 0 F x if x u F -1 M +∞ F x 0 F x
79 77 78 ifboth F x F x 0 F x if x u F -1 M +∞ F x 0 F x
80 58 43 79 syl2anc φ u dom vol vol u < C 2 M x if x u F -1 M +∞ F x 0 F x
81 80 ralrimiva φ u dom vol vol u < C 2 M x if x u F -1 M +∞ F x 0 F x
82 eqidd φ u dom vol vol u < C 2 M x if x u F -1 M +∞ F x 0 = x if x u F -1 M +∞ F x 0
83 65 75 41 82 67 ofrfval2 φ u dom vol vol u < C 2 M x if x u F -1 M +∞ F x 0 f F x if x u F -1 M +∞ F x 0 F x
84 81 83 mpbird φ u dom vol vol u < C 2 M x if x u F -1 M +∞ F x 0 f F
85 itg2le x if x u F -1 M +∞ F x 0 : 0 +∞ F : 0 +∞ x if x u F -1 M +∞ F x 0 f F 2 x if x u F -1 M +∞ F x 0 2 F
86 76 57 84 85 syl3anc φ u dom vol vol u < C 2 M 2 x if x u F -1 M +∞ F x 0 2 F
87 itg2lecl x if x u F -1 M +∞ F x 0 : 0 +∞ 2 F 2 x if x u F -1 M +∞ F x 0 2 F 2 x if x u F -1 M +∞ F x 0
88 76 54 86 87 syl3anc φ u dom vol vol u < C 2 M 2 x if x u F -1 M +∞ F x 0
89 19 21 30 33 46 47 48 49 73 88 itg2split φ u dom vol vol u < C 2 M 2 x if x u F x 0 = 2 x if x u F -1 M +∞ F x 0 + 2 x if x u F -1 M +∞ F x 0
90 4 adantr φ u dom vol vol u < C 2 M C +
91 90 rphalfcld φ u dom vol vol u < C 2 M C 2 +
92 91 rpred φ u dom vol vol u < C 2 M C 2
93 ifcl F x 0 +∞ 0 0 +∞ if x F -1 M +∞ F x 0 0 +∞
94 45 50 93 sylancl φ u dom vol vol u < C 2 M x if x F -1 M +∞ F x 0 0 +∞
95 94 fmpttd φ u dom vol vol u < C 2 M x if x F -1 M +∞ F x 0 : 0 +∞
96 breq1 F x = if x F -1 M +∞ F x 0 F x F x if x F -1 M +∞ F x 0 F x
97 breq1 0 = if x F -1 M +∞ F x 0 0 F x if x F -1 M +∞ F x 0 F x
98 96 97 ifboth F x F x 0 F x if x F -1 M +∞ F x 0 F x
99 58 43 98 syl2anc φ u dom vol vol u < C 2 M x if x F -1 M +∞ F x 0 F x
100 99 ralrimiva φ u dom vol vol u < C 2 M x if x F -1 M +∞ F x 0 F x
101 eqidd φ u dom vol vol u < C 2 M x if x F -1 M +∞ F x 0 = x if x F -1 M +∞ F x 0
102 65 94 45 101 67 ofrfval2 φ u dom vol vol u < C 2 M x if x F -1 M +∞ F x 0 f F x if x F -1 M +∞ F x 0 F x
103 100 102 mpbird φ u dom vol vol u < C 2 M x if x F -1 M +∞ F x 0 f F
104 itg2le x if x F -1 M +∞ F x 0 : 0 +∞ F : 0 +∞ x if x F -1 M +∞ F x 0 f F 2 x if x F -1 M +∞ F x 0 2 F
105 95 57 103 104 syl3anc φ u dom vol vol u < C 2 M 2 x if x F -1 M +∞ F x 0 2 F
106 itg2lecl x if x F -1 M +∞ F x 0 : 0 +∞ 2 F 2 x if x F -1 M +∞ F x 0 2 F 2 x if x F -1 M +∞ F x 0
107 95 54 105 106 syl3anc φ u dom vol vol u < C 2 M 2 x if x F -1 M +∞ F x 0
108 0red φ u dom vol vol u < C 2 M x 0
109 elinel2 x u F -1 M +∞ x F -1 M +∞
110 109 a1i φ u dom vol vol u < C 2 M x x u F -1 M +∞ x F -1 M +∞
111 ifle F x 0 0 F x x u F -1 M +∞ x F -1 M +∞ if x u F -1 M +∞ F x 0 if x F -1 M +∞ F x 0
112 41 108 43 110 111 syl31anc φ u dom vol vol u < C 2 M x if x u F -1 M +∞ F x 0 if x F -1 M +∞ F x 0
113 112 ralrimiva φ u dom vol vol u < C 2 M x if x u F -1 M +∞ F x 0 if x F -1 M +∞ F x 0
114 65 52 94 66 101 ofrfval2 φ u dom vol vol u < C 2 M x if x u F -1 M +∞ F x 0 f x if x F -1 M +∞ F x 0 x if x u F -1 M +∞ F x 0 if x F -1 M +∞ F x 0
115 113 114 mpbird φ u dom vol vol u < C 2 M x if x u F -1 M +∞ F x 0 f x if x F -1 M +∞ F x 0
116 itg2le x if x u F -1 M +∞ F x 0 : 0 +∞ x if x F -1 M +∞ F x 0 : 0 +∞ x if x u F -1 M +∞ F x 0 f x if x F -1 M +∞ F x 0 2 x if x u F -1 M +∞ F x 0 2 x if x F -1 M +∞ F x 0
117 53 95 115 116 syl3anc φ u dom vol vol u < C 2 M 2 x if x u F -1 M +∞ F x 0 2 x if x F -1 M +∞ F x 0
118 67 fveq2d φ u dom vol vol u < C 2 M 2 F = 2 x F x
119 cmmbl F -1 M +∞ dom vol F -1 M +∞ dom vol
120 17 119 syl φ u dom vol vol u < C 2 M F -1 M +∞ dom vol
121 disjdif F -1 M +∞ F -1 M +∞ =
122 121 fveq2i vol * F -1 M +∞ F -1 M +∞ = vol *
123 122 28 eqtri vol * F -1 M +∞ F -1 M +∞ = 0
124 123 a1i φ u dom vol vol u < C 2 M vol * F -1 M +∞ F -1 M +∞ = 0
125 undif2 F -1 M +∞ F -1 M +∞ = F -1 M +∞
126 mblss F -1 M +∞ dom vol F -1 M +∞
127 17 126 syl φ u dom vol vol u < C 2 M F -1 M +∞
128 ssequn1 F -1 M +∞ F -1 M +∞ =
129 127 128 sylib φ u dom vol vol u < C 2 M F -1 M +∞ =
130 125 129 eqtr2id φ u dom vol vol u < C 2 M = F -1 M +∞ F -1 M +∞
131 eqid x if x F -1 M +∞ F x 0 = x if x F -1 M +∞ F x 0
132 eqid x if x F -1 M +∞ F x 0 = x if x F -1 M +∞ F x 0
133 iftrue x if x F x 0 = F x
134 133 mpteq2ia x if x F x 0 = x F x
135 134 eqcomi x F x = x if x F x 0
136 ifcl F x 0 +∞ 0 0 +∞ if x F -1 M +∞ F x 0 0 +∞
137 45 50 136 sylancl φ u dom vol vol u < C 2 M x if x F -1 M +∞ F x 0 0 +∞
138 137 fmpttd φ u dom vol vol u < C 2 M x if x F -1 M +∞ F x 0 : 0 +∞
139 breq1 F x = if x F -1 M +∞ F x 0 F x F x if x F -1 M +∞ F x 0 F x
140 breq1 0 = if x F -1 M +∞ F x 0 0 F x if x F -1 M +∞ F x 0 F x
141 139 140 ifboth F x F x 0 F x if x F -1 M +∞ F x 0 F x
142 58 43 141 syl2anc φ u dom vol vol u < C 2 M x if x F -1 M +∞ F x 0 F x
143 142 ralrimiva φ u dom vol vol u < C 2 M x if x F -1 M +∞ F x 0 F x
144 eqidd φ u dom vol vol u < C 2 M x if x F -1 M +∞ F x 0 = x if x F -1 M +∞ F x 0
145 65 137 45 144 67 ofrfval2 φ u dom vol vol u < C 2 M x if x F -1 M +∞ F x 0 f F x if x F -1 M +∞ F x 0 F x
146 143 145 mpbird φ u dom vol vol u < C 2 M x if x F -1 M +∞ F x 0 f F
147 itg2le x if x F -1 M +∞ F x 0 : 0 +∞ F : 0 +∞ x if x F -1 M +∞ F x 0 f F 2 x if x F -1 M +∞ F x 0 2 F
148 138 57 146 147 syl3anc φ u dom vol vol u < C 2 M 2 x if x F -1 M +∞ F x 0 2 F
149 itg2lecl x if x F -1 M +∞ F x 0 : 0 +∞ 2 F 2 x if x F -1 M +∞ F x 0 2 F 2 x if x F -1 M +∞ F x 0
150 138 54 148 149 syl3anc φ u dom vol vol u < C 2 M 2 x if x F -1 M +∞ F x 0
151 17 120 124 130 45 131 132 135 107 150 itg2split φ u dom vol vol u < C 2 M 2 x F x = 2 x if x F -1 M +∞ F x 0 + 2 x if x F -1 M +∞ F x 0
152 118 151 eqtrd φ u dom vol vol u < C 2 M 2 F = 2 x if x F -1 M +∞ F x 0 + 2 x if x F -1 M +∞ F x 0
153 eldif x F -1 M +∞ x ¬ x F -1 M +∞
154 153 baib x x F -1 M +∞ ¬ x F -1 M +∞
155 154 adantl φ u dom vol vol u < C 2 M x x F -1 M +∞ ¬ x F -1 M +∞
156 1 ffnd φ F Fn
157 156 ad2antrr φ u dom vol vol u < C 2 M x F Fn
158 elpreima F Fn x F -1 M +∞ x F x M +∞
159 157 158 syl φ u dom vol vol u < C 2 M x x F -1 M +∞ x F x M +∞
160 41 biantrurd φ u dom vol vol u < C 2 M x M < F x F x M < F x
161 5 nnred φ M
162 161 ad2antrr φ u dom vol vol u < C 2 M x M
163 162 rexrd φ u dom vol vol u < C 2 M x M *
164 elioopnf M * F x M +∞ F x M < F x
165 163 164 syl φ u dom vol vol u < C 2 M x F x M +∞ F x M < F x
166 simpr φ u dom vol vol u < C 2 M x x
167 166 biantrurd φ u dom vol vol u < C 2 M x F x M +∞ x F x M +∞
168 160 165 167 3bitr2d φ u dom vol vol u < C 2 M x M < F x x F x M +∞
169 162 41 ltnled φ u dom vol vol u < C 2 M x M < F x ¬ F x M
170 159 168 169 3bitr2rd φ u dom vol vol u < C 2 M x ¬ F x M x F -1 M +∞
171 170 con1bid φ u dom vol vol u < C 2 M x ¬ x F -1 M +∞ F x M
172 155 171 bitrd φ u dom vol vol u < C 2 M x x F -1 M +∞ F x M
173 172 ifbid φ u dom vol vol u < C 2 M x if x F -1 M +∞ F x 0 = if F x M F x 0
174 173 mpteq2dva φ u dom vol vol u < C 2 M x if x F -1 M +∞ F x 0 = x if F x M F x 0
175 174 fveq2d φ u dom vol vol u < C 2 M 2 x if x F -1 M +∞ F x 0 = 2 x if F x M F x 0
176 6 adantr φ u dom vol vol u < C 2 M ¬ 2 x if F x M F x 0 2 F C 2
177 175 176 eqnbrtrd φ u dom vol vol u < C 2 M ¬ 2 x if x F -1 M +∞ F x 0 2 F C 2
178 54 92 resubcld φ u dom vol vol u < C 2 M 2 F C 2
179 178 150 ltnled φ u dom vol vol u < C 2 M 2 F C 2 < 2 x if x F -1 M +∞ F x 0 ¬ 2 x if x F -1 M +∞ F x 0 2 F C 2
180 177 179 mpbird φ u dom vol vol u < C 2 M 2 F C 2 < 2 x if x F -1 M +∞ F x 0
181 54 92 150 ltsubadd2d φ u dom vol vol u < C 2 M 2 F C 2 < 2 x if x F -1 M +∞ F x 0 2 F < C 2 + 2 x if x F -1 M +∞ F x 0
182 180 181 mpbid φ u dom vol vol u < C 2 M 2 F < C 2 + 2 x if x F -1 M +∞ F x 0
183 152 182 eqbrtrrd φ u dom vol vol u < C 2 M 2 x if x F -1 M +∞ F x 0 + 2 x if x F -1 M +∞ F x 0 < C 2 + 2 x if x F -1 M +∞ F x 0
184 107 92 150 ltadd1d φ u dom vol vol u < C 2 M 2 x if x F -1 M +∞ F x 0 < C 2 2 x if x F -1 M +∞ F x 0 + 2 x if x F -1 M +∞ F x 0 < C 2 + 2 x if x F -1 M +∞ F x 0
185 183 184 mpbird φ u dom vol vol u < C 2 M 2 x if x F -1 M +∞ F x 0 < C 2
186 73 107 92 117 185 lelttrd φ u dom vol vol u < C 2 M 2 x if x u F -1 M +∞ F x 0 < C 2
187 161 adantr φ u dom vol vol u < C 2 M M
188 mblvol u dom vol vol u = vol * u
189 10 188 syl φ u dom vol vol u < C 2 M vol u = vol * u
190 9 rpred φ C 2 M
191 190 adantr φ u dom vol vol u < C 2 M C 2 M
192 ovolcl u vol * u *
193 35 192 syl φ u dom vol vol u < C 2 M vol * u *
194 191 rexrd φ u dom vol vol u < C 2 M C 2 M *
195 simprr φ u dom vol vol u < C 2 M vol u < C 2 M
196 189 195 eqbrtrrd φ u dom vol vol u < C 2 M vol * u < C 2 M
197 193 194 196 xrltled φ u dom vol vol u < C 2 M vol * u C 2 M
198 ovollecl u C 2 M vol * u C 2 M vol * u
199 35 191 197 198 syl3anc φ u dom vol vol u < C 2 M vol * u
200 189 199 eqeltrd φ u dom vol vol u < C 2 M vol u
201 187 200 remulcld φ u dom vol vol u < C 2 M M vol u
202 187 rexrd φ u dom vol vol u < C 2 M M *
203 5 adantr φ u dom vol vol u < C 2 M M
204 203 nnnn0d φ u dom vol vol u < C 2 M M 0
205 204 nn0ge0d φ u dom vol vol u < C 2 M 0 M
206 elxrge0 M 0 +∞ M * 0 M
207 202 205 206 sylanbrc φ u dom vol vol u < C 2 M M 0 +∞
208 ifcl M 0 +∞ 0 0 +∞ if x u M 0 0 +∞
209 207 50 208 sylancl φ u dom vol vol u < C 2 M if x u M 0 0 +∞
210 209 adantr φ u dom vol vol u < C 2 M x if x u M 0 0 +∞
211 210 fmpttd φ u dom vol vol u < C 2 M x if x u M 0 : 0 +∞
212 eldifn x u F -1 M +∞ ¬ x F -1 M +∞
213 212 adantl φ u dom vol vol u < C 2 M x u F -1 M +∞ ¬ x F -1 M +∞
214 difssd φ u dom vol vol u < C 2 M u F -1 M +∞ u
215 214 sselda φ u dom vol vol u < C 2 M x u F -1 M +∞ x u
216 36 170 syldan φ u dom vol vol u < C 2 M x u ¬ F x M x F -1 M +∞
217 215 216 syldan φ u dom vol vol u < C 2 M x u F -1 M +∞ ¬ F x M x F -1 M +∞
218 217 con1bid φ u dom vol vol u < C 2 M x u F -1 M +∞ ¬ x F -1 M +∞ F x M
219 213 218 mpbid φ u dom vol vol u < C 2 M x u F -1 M +∞ F x M
220 iftrue x u F -1 M +∞ if x u F -1 M +∞ F x 0 = F x
221 220 adantl φ u dom vol vol u < C 2 M x u F -1 M +∞ if x u F -1 M +∞ F x 0 = F x
222 215 iftrued φ u dom vol vol u < C 2 M x u F -1 M +∞ if x u M 0 = M
223 219 221 222 3brtr4d φ u dom vol vol u < C 2 M x u F -1 M +∞ if x u F -1 M +∞ F x 0 if x u M 0
224 iffalse ¬ x u F -1 M +∞ if x u F -1 M +∞ F x 0 = 0
225 224 adantl φ u dom vol vol u < C 2 M ¬ x u F -1 M +∞ if x u F -1 M +∞ F x 0 = 0
226 0le0 0 0
227 breq2 M = if x u M 0 0 M 0 if x u M 0
228 breq2 0 = if x u M 0 0 0 0 if x u M 0
229 227 228 ifboth 0 M 0 0 0 if x u M 0
230 205 226 229 sylancl φ u dom vol vol u < C 2 M 0 if x u M 0
231 230 adantr φ u dom vol vol u < C 2 M ¬ x u F -1 M +∞ 0 if x u M 0
232 225 231 eqbrtrd φ u dom vol vol u < C 2 M ¬ x u F -1 M +∞ if x u F -1 M +∞ F x 0 if x u M 0
233 223 232 pm2.61dan φ u dom vol vol u < C 2 M if x u F -1 M +∞ F x 0 if x u M 0
234 233 ralrimivw φ u dom vol vol u < C 2 M x if x u F -1 M +∞ F x 0 if x u M 0
235 eqidd φ u dom vol vol u < C 2 M x if x u M 0 = x if x u M 0
236 65 75 210 82 235 ofrfval2 φ u dom vol vol u < C 2 M x if x u F -1 M +∞ F x 0 f x if x u M 0 x if x u F -1 M +∞ F x 0 if x u M 0
237 234 236 mpbird φ u dom vol vol u < C 2 M x if x u F -1 M +∞ F x 0 f x if x u M 0
238 itg2le x if x u F -1 M +∞ F x 0 : 0 +∞ x if x u M 0 : 0 +∞ x if x u F -1 M +∞ F x 0 f x if x u M 0 2 x if x u F -1 M +∞ F x 0 2 x if x u M 0
239 76 211 237 238 syl3anc φ u dom vol vol u < C 2 M 2 x if x u F -1 M +∞ F x 0 2 x if x u M 0
240 elrege0 M 0 +∞ M 0 M
241 187 205 240 sylanbrc φ u dom vol vol u < C 2 M M 0 +∞
242 itg2const u dom vol vol u M 0 +∞ 2 x if x u M 0 = M vol u
243 10 200 241 242 syl3anc φ u dom vol vol u < C 2 M 2 x if x u M 0 = M vol u
244 239 243 breqtrd φ u dom vol vol u < C 2 M 2 x if x u F -1 M +∞ F x 0 M vol u
245 203 nngt0d φ u dom vol vol u < C 2 M 0 < M
246 ltmuldiv2 vol u C 2 M 0 < M M vol u < C 2 vol u < C 2 M
247 200 92 187 245 246 syl112anc φ u dom vol vol u < C 2 M M vol u < C 2 vol u < C 2 M
248 195 247 mpbird φ u dom vol vol u < C 2 M M vol u < C 2
249 88 201 92 244 248 lelttrd φ u dom vol vol u < C 2 M 2 x if x u F -1 M +∞ F x 0 < C 2
250 73 88 92 92 186 249 lt2addd φ u dom vol vol u < C 2 M 2 x if x u F -1 M +∞ F x 0 + 2 x if x u F -1 M +∞ F x 0 < C 2 + C 2
251 89 250 eqbrtrd φ u dom vol vol u < C 2 M 2 x if x u F x 0 < C 2 + C 2
252 90 rpcnd φ u dom vol vol u < C 2 M C
253 252 2halvesd φ u dom vol vol u < C 2 M C 2 + C 2 = C
254 251 253 breqtrd φ u dom vol vol u < C 2 M 2 x if x u F x 0 < C
255 254 expr φ u dom vol vol u < C 2 M 2 x if x u F x 0 < C
256 255 ralrimiva φ u dom vol vol u < C 2 M 2 x if x u F x 0 < C
257 breq2 d = C 2 M vol u < d vol u < C 2 M
258 257 rspceaimv C 2 M + u dom vol vol u < C 2 M 2 x if x u F x 0 < C d + u dom vol vol u < d 2 x if x u F x 0 < C
259 9 256 258 syl2anc φ d + u dom vol vol u < d 2 x if x u F x 0 < C