Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|
2 |
|
simpr |
|
3 |
|
rpre |
|
4 |
3
|
ad2antlr |
|
5 |
|
rpge0 |
|
6 |
5
|
ad2antlr |
|
7 |
|
elrege0 |
|
8 |
4 6 7
|
sylanbrc |
|
9 |
|
itg2const |
|
10 |
1 2 8 9
|
syl3anc |
|
11 |
4 2
|
remulcld |
|
12 |
10 11
|
eqeltrd |
|
13 |
|
mblvol |
|
14 |
13
|
ad2antrr |
|
15 |
|
mblss |
|
16 |
15
|
ad3antrrr |
|
17 |
|
peano2re |
|
18 |
17
|
adantl |
|
19 |
|
simplr |
|
20 |
18 19
|
rerpdivcld |
|
21 |
20
|
adantr |
|
22 |
|
simpr |
|
23 |
|
ovollecl |
|
24 |
16 21 22 23
|
syl3anc |
|
25 |
|
simplll |
|
26 |
20
|
adantr |
|
27 |
26
|
rexrd |
|
28 |
|
simpr |
|
29 |
3
|
ad2antlr |
|
30 |
29
|
rexrd |
|
31 |
5
|
ad2antlr |
|
32 |
|
elxrge0 |
|
33 |
30 31 32
|
sylanbrc |
|
34 |
|
0e0iccpnf |
|
35 |
|
ifcl |
|
36 |
33 34 35
|
sylancl |
|
37 |
36
|
fmpttd |
|
38 |
37
|
adantr |
|
39 |
|
itg2ge0 |
|
40 |
38 39
|
syl |
|
41 |
28 40
|
ge0p1rpd |
|
42 |
41 19
|
rpdivcld |
|
43 |
42
|
rpge0d |
|
44 |
43
|
adantr |
|
45 |
14
|
breq2d |
|
46 |
45
|
biimpar |
|
47 |
|
0xr |
|
48 |
|
iccssxr |
|
49 |
|
volf |
|
50 |
49
|
ffvelrni |
|
51 |
48 50
|
sselid |
|
52 |
25 51
|
syl |
|
53 |
|
elicc1 |
|
54 |
47 52 53
|
sylancr |
|
55 |
27 44 46 54
|
mpbir3and |
|
56 |
|
volivth |
|
57 |
25 55 56
|
syl2anc |
|
58 |
57
|
ex |
|
59 |
|
simprl |
|
60 |
|
simprrr |
|
61 |
20
|
adantr |
|
62 |
60 61
|
eqeltrd |
|
63 |
3
|
ad2antlr |
|
64 |
63
|
adantr |
|
65 |
19
|
adantr |
|
66 |
65
|
rpge0d |
|
67 |
64 66 7
|
sylanbrc |
|
68 |
|
itg2const |
|
69 |
59 62 67 68
|
syl3anc |
|
70 |
60
|
oveq2d |
|
71 |
18
|
recnd |
|
72 |
63
|
recnd |
|
73 |
|
rpne0 |
|
74 |
73
|
ad2antlr |
|
75 |
71 72 74
|
divcan2d |
|
76 |
75
|
adantr |
|
77 |
69 70 76
|
3eqtrd |
|
78 |
3
|
adantl |
|
79 |
78
|
rexrd |
|
80 |
5
|
adantl |
|
81 |
79 80 32
|
sylanbrc |
|
82 |
|
ifcl |
|
83 |
81 34 82
|
sylancl |
|
84 |
83
|
adantr |
|
85 |
84
|
fmpttd |
|
86 |
85
|
ad2antrr |
|
87 |
38
|
adantr |
|
88 |
|
simpl |
|
89 |
|
simprl |
|
90 |
78
|
ad3antrrr |
|
91 |
90
|
leidd |
|
92 |
|
iftrue |
|
93 |
92
|
adantl |
|
94 |
|
simplr |
|
95 |
94
|
sselda |
|
96 |
95
|
iftrued |
|
97 |
91 93 96
|
3brtr4d |
|
98 |
|
iffalse |
|
99 |
98
|
adantl |
|
100 |
|
0le0 |
|
101 |
|
breq2 |
|
102 |
|
breq2 |
|
103 |
101 102
|
ifboth |
|
104 |
80 100 103
|
sylancl |
|
105 |
104
|
ad3antrrr |
|
106 |
99 105
|
eqbrtrd |
|
107 |
97 106
|
pm2.61dan |
|
108 |
107
|
ralrimiva |
|
109 |
|
reex |
|
110 |
109
|
a1i |
|
111 |
|
eqidd |
|
112 |
|
eqidd |
|
113 |
110 84 36 111 112
|
ofrfval2 |
|
114 |
113
|
biimpar |
|
115 |
108 114
|
syldan |
|
116 |
88 89 115
|
syl2an |
|
117 |
|
itg2le |
|
118 |
86 87 116 117
|
syl3anc |
|
119 |
77 118
|
eqbrtrrd |
|
120 |
|
ltp1 |
|
121 |
120
|
ad2antlr |
|
122 |
|
simplr |
|
123 |
17
|
ad2antlr |
|
124 |
122 123
|
ltnled |
|
125 |
121 124
|
mpbid |
|
126 |
119 125
|
pm2.21dd |
|
127 |
126
|
rexlimdvaa |
|
128 |
58 127
|
syld |
|
129 |
128
|
imp |
|
130 |
51
|
ad2antrr |
|
131 |
14 130
|
eqeltrrd |
|
132 |
20
|
rexrd |
|
133 |
|
xrletri |
|
134 |
131 132 133
|
syl2anc |
|
135 |
24 129 134
|
mpjaodan |
|
136 |
14 135
|
eqeltrd |
|
137 |
12 136
|
impbida |
|