Metamath Proof Explorer


Theorem itg2const2

Description: When the base set of a constant function has infinite volume, the integral is also infinite and vice-versa. (Contributed by Mario Carneiro, 30-Aug-2014)

Ref Expression
Assertion itg2const2 A dom vol B + vol A 2 x if x A B 0

Proof

Step Hyp Ref Expression
1 simpll A dom vol B + vol A A dom vol
2 simpr A dom vol B + vol A vol A
3 rpre B + B
4 3 ad2antlr A dom vol B + vol A B
5 rpge0 B + 0 B
6 5 ad2antlr A dom vol B + vol A 0 B
7 elrege0 B 0 +∞ B 0 B
8 4 6 7 sylanbrc A dom vol B + vol A B 0 +∞
9 itg2const A dom vol vol A B 0 +∞ 2 x if x A B 0 = B vol A
10 1 2 8 9 syl3anc A dom vol B + vol A 2 x if x A B 0 = B vol A
11 4 2 remulcld A dom vol B + vol A B vol A
12 10 11 eqeltrd A dom vol B + vol A 2 x if x A B 0
13 mblvol A dom vol vol A = vol * A
14 13 ad2antrr A dom vol B + 2 x if x A B 0 vol A = vol * A
15 mblss A dom vol A
16 15 ad3antrrr A dom vol B + 2 x if x A B 0 vol * A 2 x if x A B 0 + 1 B A
17 peano2re 2 x if x A B 0 2 x if x A B 0 + 1
18 17 adantl A dom vol B + 2 x if x A B 0 2 x if x A B 0 + 1
19 simplr A dom vol B + 2 x if x A B 0 B +
20 18 19 rerpdivcld A dom vol B + 2 x if x A B 0 2 x if x A B 0 + 1 B
21 20 adantr A dom vol B + 2 x if x A B 0 vol * A 2 x if x A B 0 + 1 B 2 x if x A B 0 + 1 B
22 simpr A dom vol B + 2 x if x A B 0 vol * A 2 x if x A B 0 + 1 B vol * A 2 x if x A B 0 + 1 B
23 ovollecl A 2 x if x A B 0 + 1 B vol * A 2 x if x A B 0 + 1 B vol * A
24 16 21 22 23 syl3anc A dom vol B + 2 x if x A B 0 vol * A 2 x if x A B 0 + 1 B vol * A
25 simplll A dom vol B + 2 x if x A B 0 2 x if x A B 0 + 1 B vol * A A dom vol
26 20 adantr A dom vol B + 2 x if x A B 0 2 x if x A B 0 + 1 B vol * A 2 x if x A B 0 + 1 B
27 26 rexrd A dom vol B + 2 x if x A B 0 2 x if x A B 0 + 1 B vol * A 2 x if x A B 0 + 1 B *
28 simpr A dom vol B + 2 x if x A B 0 2 x if x A B 0
29 3 ad2antlr A dom vol B + x B
30 29 rexrd A dom vol B + x B *
31 5 ad2antlr A dom vol B + x 0 B
32 elxrge0 B 0 +∞ B * 0 B
33 30 31 32 sylanbrc A dom vol B + x B 0 +∞
34 0e0iccpnf 0 0 +∞
35 ifcl B 0 +∞ 0 0 +∞ if x A B 0 0 +∞
36 33 34 35 sylancl A dom vol B + x if x A B 0 0 +∞
37 36 fmpttd A dom vol B + x if x A B 0 : 0 +∞
38 37 adantr A dom vol B + 2 x if x A B 0 x if x A B 0 : 0 +∞
39 itg2ge0 x if x A B 0 : 0 +∞ 0 2 x if x A B 0
40 38 39 syl A dom vol B + 2 x if x A B 0 0 2 x if x A B 0
41 28 40 ge0p1rpd A dom vol B + 2 x if x A B 0 2 x if x A B 0 + 1 +
42 41 19 rpdivcld A dom vol B + 2 x if x A B 0 2 x if x A B 0 + 1 B +
43 42 rpge0d A dom vol B + 2 x if x A B 0 0 2 x if x A B 0 + 1 B
44 43 adantr A dom vol B + 2 x if x A B 0 2 x if x A B 0 + 1 B vol * A 0 2 x if x A B 0 + 1 B
45 14 breq2d A dom vol B + 2 x if x A B 0 2 x if x A B 0 + 1 B vol A 2 x if x A B 0 + 1 B vol * A
46 45 biimpar A dom vol B + 2 x if x A B 0 2 x if x A B 0 + 1 B vol * A 2 x if x A B 0 + 1 B vol A
47 0xr 0 *
48 iccssxr 0 +∞ *
49 volf vol : dom vol 0 +∞
50 49 ffvelrni A dom vol vol A 0 +∞
51 48 50 sselid A dom vol vol A *
52 25 51 syl A dom vol B + 2 x if x A B 0 2 x if x A B 0 + 1 B vol * A vol A *
53 elicc1 0 * vol A * 2 x if x A B 0 + 1 B 0 vol A 2 x if x A B 0 + 1 B * 0 2 x if x A B 0 + 1 B 2 x if x A B 0 + 1 B vol A
54 47 52 53 sylancr A dom vol B + 2 x if x A B 0 2 x if x A B 0 + 1 B vol * A 2 x if x A B 0 + 1 B 0 vol A 2 x if x A B 0 + 1 B * 0 2 x if x A B 0 + 1 B 2 x if x A B 0 + 1 B vol A
55 27 44 46 54 mpbir3and A dom vol B + 2 x if x A B 0 2 x if x A B 0 + 1 B vol * A 2 x if x A B 0 + 1 B 0 vol A
56 volivth A dom vol 2 x if x A B 0 + 1 B 0 vol A z dom vol z A vol z = 2 x if x A B 0 + 1 B
57 25 55 56 syl2anc A dom vol B + 2 x if x A B 0 2 x if x A B 0 + 1 B vol * A z dom vol z A vol z = 2 x if x A B 0 + 1 B
58 57 ex A dom vol B + 2 x if x A B 0 2 x if x A B 0 + 1 B vol * A z dom vol z A vol z = 2 x if x A B 0 + 1 B
59 simprl A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B z dom vol
60 simprrr A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B vol z = 2 x if x A B 0 + 1 B
61 20 adantr A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B 2 x if x A B 0 + 1 B
62 60 61 eqeltrd A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B vol z
63 3 ad2antlr A dom vol B + 2 x if x A B 0 B
64 63 adantr A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B B
65 19 adantr A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B B +
66 65 rpge0d A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B 0 B
67 64 66 7 sylanbrc A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B B 0 +∞
68 itg2const z dom vol vol z B 0 +∞ 2 x if x z B 0 = B vol z
69 59 62 67 68 syl3anc A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B 2 x if x z B 0 = B vol z
70 60 oveq2d A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B B vol z = B 2 x if x A B 0 + 1 B
71 18 recnd A dom vol B + 2 x if x A B 0 2 x if x A B 0 + 1
72 63 recnd A dom vol B + 2 x if x A B 0 B
73 rpne0 B + B 0
74 73 ad2antlr A dom vol B + 2 x if x A B 0 B 0
75 71 72 74 divcan2d A dom vol B + 2 x if x A B 0 B 2 x if x A B 0 + 1 B = 2 x if x A B 0 + 1
76 75 adantr A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B B 2 x if x A B 0 + 1 B = 2 x if x A B 0 + 1
77 69 70 76 3eqtrd A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B 2 x if x z B 0 = 2 x if x A B 0 + 1
78 3 adantl A dom vol B + B
79 78 rexrd A dom vol B + B *
80 5 adantl A dom vol B + 0 B
81 79 80 32 sylanbrc A dom vol B + B 0 +∞
82 ifcl B 0 +∞ 0 0 +∞ if x z B 0 0 +∞
83 81 34 82 sylancl A dom vol B + if x z B 0 0 +∞
84 83 adantr A dom vol B + x if x z B 0 0 +∞
85 84 fmpttd A dom vol B + x if x z B 0 : 0 +∞
86 85 ad2antrr A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B x if x z B 0 : 0 +∞
87 38 adantr A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B x if x A B 0 : 0 +∞
88 simpl A dom vol B + 2 x if x A B 0 A dom vol B +
89 simprl z dom vol z A vol z = 2 x if x A B 0 + 1 B z A
90 78 ad3antrrr A dom vol B + z A x x z B
91 90 leidd A dom vol B + z A x x z B B
92 iftrue x z if x z B 0 = B
93 92 adantl A dom vol B + z A x x z if x z B 0 = B
94 simplr A dom vol B + z A x z A
95 94 sselda A dom vol B + z A x x z x A
96 95 iftrued A dom vol B + z A x x z if x A B 0 = B
97 91 93 96 3brtr4d A dom vol B + z A x x z if x z B 0 if x A B 0
98 iffalse ¬ x z if x z B 0 = 0
99 98 adantl A dom vol B + z A x ¬ x z if x z B 0 = 0
100 0le0 0 0
101 breq2 B = if x A B 0 0 B 0 if x A B 0
102 breq2 0 = if x A B 0 0 0 0 if x A B 0
103 101 102 ifboth 0 B 0 0 0 if x A B 0
104 80 100 103 sylancl A dom vol B + 0 if x A B 0
105 104 ad3antrrr A dom vol B + z A x ¬ x z 0 if x A B 0
106 99 105 eqbrtrd A dom vol B + z A x ¬ x z if x z B 0 if x A B 0
107 97 106 pm2.61dan A dom vol B + z A x if x z B 0 if x A B 0
108 107 ralrimiva A dom vol B + z A x if x z B 0 if x A B 0
109 reex V
110 109 a1i A dom vol B + V
111 eqidd A dom vol B + x if x z B 0 = x if x z B 0
112 eqidd A dom vol B + x if x A B 0 = x if x A B 0
113 110 84 36 111 112 ofrfval2 A dom vol B + x if x z B 0 f x if x A B 0 x if x z B 0 if x A B 0
114 113 biimpar A dom vol B + x if x z B 0 if x A B 0 x if x z B 0 f x if x A B 0
115 108 114 syldan A dom vol B + z A x if x z B 0 f x if x A B 0
116 88 89 115 syl2an A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B x if x z B 0 f x if x A B 0
117 itg2le x if x z B 0 : 0 +∞ x if x A B 0 : 0 +∞ x if x z B 0 f x if x A B 0 2 x if x z B 0 2 x if x A B 0
118 86 87 116 117 syl3anc A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B 2 x if x z B 0 2 x if x A B 0
119 77 118 eqbrtrrd A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B 2 x if x A B 0 + 1 2 x if x A B 0
120 ltp1 2 x if x A B 0 2 x if x A B 0 < 2 x if x A B 0 + 1
121 120 ad2antlr A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B 2 x if x A B 0 < 2 x if x A B 0 + 1
122 simplr A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B 2 x if x A B 0
123 17 ad2antlr A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B 2 x if x A B 0 + 1
124 122 123 ltnled A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B 2 x if x A B 0 < 2 x if x A B 0 + 1 ¬ 2 x if x A B 0 + 1 2 x if x A B 0
125 121 124 mpbid A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B ¬ 2 x if x A B 0 + 1 2 x if x A B 0
126 119 125 pm2.21dd A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B vol * A
127 126 rexlimdvaa A dom vol B + 2 x if x A B 0 z dom vol z A vol z = 2 x if x A B 0 + 1 B vol * A
128 58 127 syld A dom vol B + 2 x if x A B 0 2 x if x A B 0 + 1 B vol * A vol * A
129 128 imp A dom vol B + 2 x if x A B 0 2 x if x A B 0 + 1 B vol * A vol * A
130 51 ad2antrr A dom vol B + 2 x if x A B 0 vol A *
131 14 130 eqeltrrd A dom vol B + 2 x if x A B 0 vol * A *
132 20 rexrd A dom vol B + 2 x if x A B 0 2 x if x A B 0 + 1 B *
133 xrletri vol * A * 2 x if x A B 0 + 1 B * vol * A 2 x if x A B 0 + 1 B 2 x if x A B 0 + 1 B vol * A
134 131 132 133 syl2anc A dom vol B + 2 x if x A B 0 vol * A 2 x if x A B 0 + 1 B 2 x if x A B 0 + 1 B vol * A
135 24 129 134 mpjaodan A dom vol B + 2 x if x A B 0 vol * A
136 14 135 eqeltrd A dom vol B + 2 x if x A B 0 vol A
137 12 136 impbida A dom vol B + vol A 2 x if x A B 0