Metamath Proof Explorer


Theorem itg2eqa

Description: Approximate equality of integrals. If F = G for almost all x , then S.2 F = S.2 G . (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Hypotheses itg2lea.1 φ F : 0 +∞
itg2lea.2 φ G : 0 +∞
itg2lea.3 φ A
itg2lea.4 φ vol * A = 0
itg2eqa.5 φ x A F x = G x
Assertion itg2eqa φ 2 F = 2 G

Proof

Step Hyp Ref Expression
1 itg2lea.1 φ F : 0 +∞
2 itg2lea.2 φ G : 0 +∞
3 itg2lea.3 φ A
4 itg2lea.4 φ vol * A = 0
5 itg2eqa.5 φ x A F x = G x
6 itg2cl F : 0 +∞ 2 F *
7 1 6 syl φ 2 F *
8 itg2cl G : 0 +∞ 2 G *
9 2 8 syl φ 2 G *
10 iccssxr 0 +∞ *
11 eldifi x A x
12 ffvelrn F : 0 +∞ x F x 0 +∞
13 1 11 12 syl2an φ x A F x 0 +∞
14 10 13 sselid φ x A F x *
15 14 xrleidd φ x A F x F x
16 15 5 breqtrd φ x A F x G x
17 1 2 3 4 16 itg2lea φ 2 F 2 G
18 5 15 eqbrtrrd φ x A G x F x
19 2 1 3 4 18 itg2lea φ 2 G 2 F
20 7 9 17 19 xrletrid φ 2 F = 2 G