Metamath Proof Explorer


Theorem itg2ge0

Description: The integral of a nonnegative real function is greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion itg2ge0 F : 0 +∞ 0 2 F

Proof

Step Hyp Ref Expression
1 itg10 1 × 0 = 0
2 ffvelrn F : 0 +∞ y F y 0 +∞
3 0xr 0 *
4 pnfxr +∞ *
5 elicc1 0 * +∞ * F y 0 +∞ F y * 0 F y F y +∞
6 3 4 5 mp2an F y 0 +∞ F y * 0 F y F y +∞
7 6 simp2bi F y 0 +∞ 0 F y
8 2 7 syl F : 0 +∞ y 0 F y
9 8 ralrimiva F : 0 +∞ y 0 F y
10 0re 0
11 fnconstg 0 × 0 Fn
12 10 11 mp1i F : 0 +∞ × 0 Fn
13 ffn F : 0 +∞ F Fn
14 reex V
15 14 a1i F : 0 +∞ V
16 inidm =
17 c0ex 0 V
18 17 fvconst2 y × 0 y = 0
19 18 adantl F : 0 +∞ y × 0 y = 0
20 eqidd F : 0 +∞ y F y = F y
21 12 13 15 15 16 19 20 ofrfval F : 0 +∞ × 0 f F y 0 F y
22 9 21 mpbird F : 0 +∞ × 0 f F
23 i1f0 × 0 dom 1
24 itg2ub F : 0 +∞ × 0 dom 1 × 0 f F 1 × 0 2 F
25 23 24 mp3an2 F : 0 +∞ × 0 f F 1 × 0 2 F
26 22 25 mpdan F : 0 +∞ 1 × 0 2 F
27 1 26 eqbrtrrid F : 0 +∞ 0 2 F