Metamath Proof Explorer


Theorem itg2gt0

Description: If the function F is strictly positive on a set of positive measure, then the integral of the function is positive. (Contributed by Mario Carneiro, 30-Aug-2014)

Ref Expression
Hypotheses itg2gt0.1 φ A dom vol
itg2gt0.2 φ 0 < vol A
itg2gt0.3 φ F : 0 +∞
itg2gt0.4 φ F MblFn
itg2gt0.5 φ x A 0 < F x
Assertion itg2gt0 φ 0 < 2 F

Proof

Step Hyp Ref Expression
1 itg2gt0.1 φ A dom vol
2 itg2gt0.2 φ 0 < vol A
3 itg2gt0.3 φ F : 0 +∞
4 itg2gt0.4 φ F MblFn
5 itg2gt0.5 φ x A 0 < F x
6 iccssxr 0 +∞ *
7 volf vol : dom vol 0 +∞
8 7 ffvelrni A dom vol vol A 0 +∞
9 6 8 sselid A dom vol vol A *
10 1 9 syl φ vol A *
11 10 adantr φ ¬ 0 < 2 F vol A *
12 4 elexd φ F V
13 cnvexg F V F -1 V
14 12 13 syl φ F -1 V
15 imaexg F -1 V F -1 1 n +∞ V
16 14 15 syl φ F -1 1 n +∞ V
17 16 adantr φ n F -1 1 n +∞ V
18 17 fmpttd φ n F -1 1 n +∞ : V
19 18 ffnd φ n F -1 1 n +∞ Fn
20 fniunfv n F -1 1 n +∞ Fn k n F -1 1 n +∞ k = ran n F -1 1 n +∞
21 19 20 syl φ k n F -1 1 n +∞ k = ran n F -1 1 n +∞
22 rge0ssre 0 +∞
23 fss F : 0 +∞ 0 +∞ F :
24 3 22 23 sylancl φ F :
25 mbfima F MblFn F : F -1 1 n +∞ dom vol
26 4 24 25 syl2anc φ F -1 1 n +∞ dom vol
27 26 adantr φ n F -1 1 n +∞ dom vol
28 27 fmpttd φ n F -1 1 n +∞ : dom vol
29 28 ffvelrnda φ k n F -1 1 n +∞ k dom vol
30 29 ralrimiva φ k n F -1 1 n +∞ k dom vol
31 iunmbl k n F -1 1 n +∞ k dom vol k n F -1 1 n +∞ k dom vol
32 30 31 syl φ k n F -1 1 n +∞ k dom vol
33 21 32 eqeltrrd φ ran n F -1 1 n +∞ dom vol
34 mblss ran n F -1 1 n +∞ dom vol ran n F -1 1 n +∞
35 33 34 syl φ ran n F -1 1 n +∞
36 ovolcl ran n F -1 1 n +∞ vol * ran n F -1 1 n +∞ *
37 35 36 syl φ vol * ran n F -1 1 n +∞ *
38 37 adantr φ ¬ 0 < 2 F vol * ran n F -1 1 n +∞ *
39 0xr 0 *
40 39 a1i φ ¬ 0 < 2 F 0 *
41 mblvol A dom vol vol A = vol * A
42 1 41 syl φ vol A = vol * A
43 mblss A dom vol A
44 1 43 syl φ A
45 44 sselda φ x A x
46 3 ffvelrnda φ x F x 0 +∞
47 elrege0 F x 0 +∞ F x 0 F x
48 46 47 sylib φ x F x 0 F x
49 48 simpld φ x F x
50 45 49 syldan φ x A F x
51 nnrecl F x 0 < F x k 1 k < F x
52 50 5 51 syl2anc φ x A k 1 k < F x
53 3 ffnd φ F Fn
54 53 ad2antrr φ x A k F Fn
55 elpreima F Fn x F -1 1 k +∞ x F x 1 k +∞
56 54 55 syl φ x A k x F -1 1 k +∞ x F x 1 k +∞
57 45 adantr φ x A k x
58 57 biantrurd φ x A k F x 1 k +∞ x F x 1 k +∞
59 nnrecre k 1 k
60 59 adantl φ k 1 k
61 60 rexrd φ k 1 k *
62 61 adantlr φ x A k 1 k *
63 elioopnf 1 k * F x 1 k +∞ F x 1 k < F x
64 62 63 syl φ x A k F x 1 k +∞ F x 1 k < F x
65 56 58 64 3bitr2d φ x A k x F -1 1 k +∞ F x 1 k < F x
66 id k k
67 imaexg F -1 V F -1 1 k +∞ V
68 14 67 syl φ F -1 1 k +∞ V
69 68 adantr φ x A F -1 1 k +∞ V
70 oveq2 n = k 1 n = 1 k
71 70 oveq1d n = k 1 n +∞ = 1 k +∞
72 71 imaeq2d n = k F -1 1 n +∞ = F -1 1 k +∞
73 eqid n F -1 1 n +∞ = n F -1 1 n +∞
74 72 73 fvmptg k F -1 1 k +∞ V n F -1 1 n +∞ k = F -1 1 k +∞
75 66 69 74 syl2anr φ x A k n F -1 1 n +∞ k = F -1 1 k +∞
76 75 eleq2d φ x A k x n F -1 1 n +∞ k x F -1 1 k +∞
77 50 adantr φ x A k F x
78 77 biantrurd φ x A k 1 k < F x F x 1 k < F x
79 65 76 78 3bitr4rd φ x A k 1 k < F x x n F -1 1 n +∞ k
80 79 rexbidva φ x A k 1 k < F x k x n F -1 1 n +∞ k
81 52 80 mpbid φ x A k x n F -1 1 n +∞ k
82 81 ex φ x A k x n F -1 1 n +∞ k
83 eluni2 x ran n F -1 1 n +∞ z ran n F -1 1 n +∞ x z
84 eleq2 z = n F -1 1 n +∞ k x z x n F -1 1 n +∞ k
85 84 rexrn n F -1 1 n +∞ Fn z ran n F -1 1 n +∞ x z k x n F -1 1 n +∞ k
86 19 85 syl φ z ran n F -1 1 n +∞ x z k x n F -1 1 n +∞ k
87 83 86 syl5bb φ x ran n F -1 1 n +∞ k x n F -1 1 n +∞ k
88 82 87 sylibrd φ x A x ran n F -1 1 n +∞
89 88 ssrdv φ A ran n F -1 1 n +∞
90 ovolss A ran n F -1 1 n +∞ ran n F -1 1 n +∞ vol * A vol * ran n F -1 1 n +∞
91 89 35 90 syl2anc φ vol * A vol * ran n F -1 1 n +∞
92 42 91 eqbrtrd φ vol A vol * ran n F -1 1 n +∞
93 92 adantr φ ¬ 0 < 2 F vol A vol * ran n F -1 1 n +∞
94 mblvol ran n F -1 1 n +∞ dom vol vol ran n F -1 1 n +∞ = vol * ran n F -1 1 n +∞
95 33 94 syl φ vol ran n F -1 1 n +∞ = vol * ran n F -1 1 n +∞
96 peano2nn k k + 1
97 96 adantl φ k k + 1
98 nnrecre k + 1 1 k + 1
99 97 98 syl φ k 1 k + 1
100 99 rexrd φ k 1 k + 1 *
101 nnre k k
102 101 adantl φ k k
103 102 lep1d φ k k k + 1
104 nngt0 k 0 < k
105 104 adantl φ k 0 < k
106 97 nnred φ k k + 1
107 97 nngt0d φ k 0 < k + 1
108 lerec k 0 < k k + 1 0 < k + 1 k k + 1 1 k + 1 1 k
109 102 105 106 107 108 syl22anc φ k k k + 1 1 k + 1 1 k
110 103 109 mpbid φ k 1 k + 1 1 k
111 iooss1 1 k + 1 * 1 k + 1 1 k 1 k +∞ 1 k + 1 +∞
112 100 110 111 syl2anc φ k 1 k +∞ 1 k + 1 +∞
113 imass2 1 k +∞ 1 k + 1 +∞ F -1 1 k +∞ F -1 1 k + 1 +∞
114 112 113 syl φ k F -1 1 k +∞ F -1 1 k + 1 +∞
115 66 68 74 syl2anr φ k n F -1 1 n +∞ k = F -1 1 k +∞
116 imaexg F -1 V F -1 1 k + 1 +∞ V
117 14 116 syl φ F -1 1 k + 1 +∞ V
118 oveq2 n = k + 1 1 n = 1 k + 1
119 118 oveq1d n = k + 1 1 n +∞ = 1 k + 1 +∞
120 119 imaeq2d n = k + 1 F -1 1 n +∞ = F -1 1 k + 1 +∞
121 120 73 fvmptg k + 1 F -1 1 k + 1 +∞ V n F -1 1 n +∞ k + 1 = F -1 1 k + 1 +∞
122 96 117 121 syl2anr φ k n F -1 1 n +∞ k + 1 = F -1 1 k + 1 +∞
123 114 115 122 3sstr4d φ k n F -1 1 n +∞ k n F -1 1 n +∞ k + 1
124 123 ralrimiva φ k n F -1 1 n +∞ k n F -1 1 n +∞ k + 1
125 volsup n F -1 1 n +∞ : dom vol k n F -1 1 n +∞ k n F -1 1 n +∞ k + 1 vol ran n F -1 1 n +∞ = sup vol ran n F -1 1 n +∞ * <
126 28 124 125 syl2anc φ vol ran n F -1 1 n +∞ = sup vol ran n F -1 1 n +∞ * <
127 95 126 eqtr3d φ vol * ran n F -1 1 n +∞ = sup vol ran n F -1 1 n +∞ * <
128 127 adantr φ ¬ 0 < 2 F vol * ran n F -1 1 n +∞ = sup vol ran n F -1 1 n +∞ * <
129 68 adantr φ ¬ 0 < 2 F F -1 1 k +∞ V
130 66 129 74 syl2anr φ ¬ 0 < 2 F k n F -1 1 n +∞ k = F -1 1 k +∞
131 130 fveq2d φ ¬ 0 < 2 F k vol n F -1 1 n +∞ k = vol F -1 1 k +∞
132 39 a1i φ k 0 < vol F -1 1 k +∞ 0 *
133 nnrecgt0 k 0 < 1 k
134 133 adantl φ k 0 < 1 k
135 0re 0
136 ltle 0 1 k 0 < 1 k 0 1 k
137 135 60 136 sylancr φ k 0 < 1 k 0 1 k
138 134 137 mpd φ k 0 1 k
139 elxrge0 1 k 0 +∞ 1 k * 0 1 k
140 61 138 139 sylanbrc φ k 1 k 0 +∞
141 0e0iccpnf 0 0 +∞
142 ifcl 1 k 0 +∞ 0 0 +∞ if x F -1 1 k +∞ 1 k 0 0 +∞
143 140 141 142 sylancl φ k if x F -1 1 k +∞ 1 k 0 0 +∞
144 143 adantr φ k x if x F -1 1 k +∞ 1 k 0 0 +∞
145 144 fmpttd φ k x if x F -1 1 k +∞ 1 k 0 : 0 +∞
146 145 adantrr φ k 0 < vol F -1 1 k +∞ x if x F -1 1 k +∞ 1 k 0 : 0 +∞
147 itg2cl x if x F -1 1 k +∞ 1 k 0 : 0 +∞ 2 x if x F -1 1 k +∞ 1 k 0 *
148 146 147 syl φ k 0 < vol F -1 1 k +∞ 2 x if x F -1 1 k +∞ 1 k 0 *
149 icossicc 0 +∞ 0 +∞
150 fss F : 0 +∞ 0 +∞ 0 +∞ F : 0 +∞
151 3 149 150 sylancl φ F : 0 +∞
152 itg2cl F : 0 +∞ 2 F *
153 151 152 syl φ 2 F *
154 153 adantr φ k 0 < vol F -1 1 k +∞ 2 F *
155 0nrp ¬ 0 +
156 simpr φ k 0 < vol F -1 1 k +∞ 0 = 2 x if x F -1 1 k +∞ 1 k 0 0 = 2 x if x F -1 1 k +∞ 1 k 0
157 115 29 eqeltrrd φ k F -1 1 k +∞ dom vol
158 157 adantrr φ k 0 < vol F -1 1 k +∞ F -1 1 k +∞ dom vol
159 158 adantr φ k 0 < vol F -1 1 k +∞ 0 = 2 x if x F -1 1 k +∞ 1 k 0 F -1 1 k +∞ dom vol
160 156 135 eqeltrrdi φ k 0 < vol F -1 1 k +∞ 0 = 2 x if x F -1 1 k +∞ 1 k 0 2 x if x F -1 1 k +∞ 1 k 0
161 60 134 elrpd φ k 1 k +
162 161 adantrr φ k 0 < vol F -1 1 k +∞ 1 k +
163 162 adantr φ k 0 < vol F -1 1 k +∞ 0 = 2 x if x F -1 1 k +∞ 1 k 0 1 k +
164 itg2const2 F -1 1 k +∞ dom vol 1 k + vol F -1 1 k +∞ 2 x if x F -1 1 k +∞ 1 k 0
165 159 163 164 syl2anc φ k 0 < vol F -1 1 k +∞ 0 = 2 x if x F -1 1 k +∞ 1 k 0 vol F -1 1 k +∞ 2 x if x F -1 1 k +∞ 1 k 0
166 160 165 mpbird φ k 0 < vol F -1 1 k +∞ 0 = 2 x if x F -1 1 k +∞ 1 k 0 vol F -1 1 k +∞
167 elrege0 1 k 0 +∞ 1 k 0 1 k
168 60 138 167 sylanbrc φ k 1 k 0 +∞
169 168 adantrr φ k 0 < vol F -1 1 k +∞ 1 k 0 +∞
170 169 adantr φ k 0 < vol F -1 1 k +∞ 0 = 2 x if x F -1 1 k +∞ 1 k 0 1 k 0 +∞
171 itg2const F -1 1 k +∞ dom vol vol F -1 1 k +∞ 1 k 0 +∞ 2 x if x F -1 1 k +∞ 1 k 0 = 1 k vol F -1 1 k +∞
172 159 166 170 171 syl3anc φ k 0 < vol F -1 1 k +∞ 0 = 2 x if x F -1 1 k +∞ 1 k 0 2 x if x F -1 1 k +∞ 1 k 0 = 1 k vol F -1 1 k +∞
173 156 172 eqtrd φ k 0 < vol F -1 1 k +∞ 0 = 2 x if x F -1 1 k +∞ 1 k 0 0 = 1 k vol F -1 1 k +∞
174 simplrr φ k 0 < vol F -1 1 k +∞ 0 = 2 x if x F -1 1 k +∞ 1 k 0 0 < vol F -1 1 k +∞
175 166 174 elrpd φ k 0 < vol F -1 1 k +∞ 0 = 2 x if x F -1 1 k +∞ 1 k 0 vol F -1 1 k +∞ +
176 163 175 rpmulcld φ k 0 < vol F -1 1 k +∞ 0 = 2 x if x F -1 1 k +∞ 1 k 0 1 k vol F -1 1 k +∞ +
177 173 176 eqeltrd φ k 0 < vol F -1 1 k +∞ 0 = 2 x if x F -1 1 k +∞ 1 k 0 0 +
178 177 ex φ k 0 < vol F -1 1 k +∞ 0 = 2 x if x F -1 1 k +∞ 1 k 0 0 +
179 155 178 mtoi φ k 0 < vol F -1 1 k +∞ ¬ 0 = 2 x if x F -1 1 k +∞ 1 k 0
180 itg2ge0 x if x F -1 1 k +∞ 1 k 0 : 0 +∞ 0 2 x if x F -1 1 k +∞ 1 k 0
181 146 180 syl φ k 0 < vol F -1 1 k +∞ 0 2 x if x F -1 1 k +∞ 1 k 0
182 xrleloe 0 * 2 x if x F -1 1 k +∞ 1 k 0 * 0 2 x if x F -1 1 k +∞ 1 k 0 0 < 2 x if x F -1 1 k +∞ 1 k 0 0 = 2 x if x F -1 1 k +∞ 1 k 0
183 39 148 182 sylancr φ k 0 < vol F -1 1 k +∞ 0 2 x if x F -1 1 k +∞ 1 k 0 0 < 2 x if x F -1 1 k +∞ 1 k 0 0 = 2 x if x F -1 1 k +∞ 1 k 0
184 181 183 mpbid φ k 0 < vol F -1 1 k +∞ 0 < 2 x if x F -1 1 k +∞ 1 k 0 0 = 2 x if x F -1 1 k +∞ 1 k 0
185 184 ord φ k 0 < vol F -1 1 k +∞ ¬ 0 < 2 x if x F -1 1 k +∞ 1 k 0 0 = 2 x if x F -1 1 k +∞ 1 k 0
186 179 185 mt3d φ k 0 < vol F -1 1 k +∞ 0 < 2 x if x F -1 1 k +∞ 1 k 0
187 151 adantr φ k 0 < vol F -1 1 k +∞ F : 0 +∞
188 60 adantr φ k x F -1 1 k +∞ 1 k
189 53 adantr φ k F Fn
190 189 55 syl φ k x F -1 1 k +∞ x F x 1 k +∞
191 190 biimpa φ k x F -1 1 k +∞ x F x 1 k +∞
192 191 simpld φ k x F -1 1 k +∞ x
193 49 adantlr φ k x F x
194 192 193 syldan φ k x F -1 1 k +∞ F x
195 61 adantr φ k x F -1 1 k +∞ 1 k *
196 191 simprd φ k x F -1 1 k +∞ F x 1 k +∞
197 simpr F x 1 k < F x 1 k < F x
198 63 197 syl6bi 1 k * F x 1 k +∞ 1 k < F x
199 195 196 198 sylc φ k x F -1 1 k +∞ 1 k < F x
200 188 194 199 ltled φ k x F -1 1 k +∞ 1 k F x
201 48 simprd φ x 0 F x
202 201 adantlr φ k x 0 F x
203 192 202 syldan φ k x F -1 1 k +∞ 0 F x
204 breq1 1 k = if x F -1 1 k +∞ 1 k 0 1 k F x if x F -1 1 k +∞ 1 k 0 F x
205 breq1 0 = if x F -1 1 k +∞ 1 k 0 0 F x if x F -1 1 k +∞ 1 k 0 F x
206 204 205 ifboth 1 k F x 0 F x if x F -1 1 k +∞ 1 k 0 F x
207 200 203 206 syl2anc φ k x F -1 1 k +∞ if x F -1 1 k +∞ 1 k 0 F x
208 207 adantlr φ k x x F -1 1 k +∞ if x F -1 1 k +∞ 1 k 0 F x
209 iffalse ¬ x F -1 1 k +∞ if x F -1 1 k +∞ 1 k 0 = 0
210 209 adantl φ k x ¬ x F -1 1 k +∞ if x F -1 1 k +∞ 1 k 0 = 0
211 202 adantr φ k x ¬ x F -1 1 k +∞ 0 F x
212 210 211 eqbrtrd φ k x ¬ x F -1 1 k +∞ if x F -1 1 k +∞ 1 k 0 F x
213 208 212 pm2.61dan φ k x if x F -1 1 k +∞ 1 k 0 F x
214 213 ralrimiva φ k x if x F -1 1 k +∞ 1 k 0 F x
215 214 adantrr φ k 0 < vol F -1 1 k +∞ x if x F -1 1 k +∞ 1 k 0 F x
216 reex V
217 216 a1i φ V
218 ovex 1 k V
219 c0ex 0 V
220 218 219 ifex if x F -1 1 k +∞ 1 k 0 V
221 220 a1i φ x if x F -1 1 k +∞ 1 k 0 V
222 fvexd φ x F x V
223 eqidd φ x if x F -1 1 k +∞ 1 k 0 = x if x F -1 1 k +∞ 1 k 0
224 3 feqmptd φ F = x F x
225 217 221 222 223 224 ofrfval2 φ x if x F -1 1 k +∞ 1 k 0 f F x if x F -1 1 k +∞ 1 k 0 F x
226 225 biimpar φ x if x F -1 1 k +∞ 1 k 0 F x x if x F -1 1 k +∞ 1 k 0 f F
227 215 226 syldan φ k 0 < vol F -1 1 k +∞ x if x F -1 1 k +∞ 1 k 0 f F
228 itg2le x if x F -1 1 k +∞ 1 k 0 : 0 +∞ F : 0 +∞ x if x F -1 1 k +∞ 1 k 0 f F 2 x if x F -1 1 k +∞ 1 k 0 2 F
229 146 187 227 228 syl3anc φ k 0 < vol F -1 1 k +∞ 2 x if x F -1 1 k +∞ 1 k 0 2 F
230 132 148 154 186 229 xrltletrd φ k 0 < vol F -1 1 k +∞ 0 < 2 F
231 230 expr φ k 0 < vol F -1 1 k +∞ 0 < 2 F
232 231 con3d φ k ¬ 0 < 2 F ¬ 0 < vol F -1 1 k +∞
233 7 ffvelrni F -1 1 k +∞ dom vol vol F -1 1 k +∞ 0 +∞
234 6 233 sselid F -1 1 k +∞ dom vol vol F -1 1 k +∞ *
235 157 234 syl φ k vol F -1 1 k +∞ *
236 xrlenlt vol F -1 1 k +∞ * 0 * vol F -1 1 k +∞ 0 ¬ 0 < vol F -1 1 k +∞
237 235 39 236 sylancl φ k vol F -1 1 k +∞ 0 ¬ 0 < vol F -1 1 k +∞
238 232 237 sylibrd φ k ¬ 0 < 2 F vol F -1 1 k +∞ 0
239 238 imp φ k ¬ 0 < 2 F vol F -1 1 k +∞ 0
240 239 an32s φ ¬ 0 < 2 F k vol F -1 1 k +∞ 0
241 131 240 eqbrtrd φ ¬ 0 < 2 F k vol n F -1 1 n +∞ k 0
242 241 ralrimiva φ ¬ 0 < 2 F k vol n F -1 1 n +∞ k 0
243 ffn n F -1 1 n +∞ : V n F -1 1 n +∞ Fn
244 fveq2 z = n F -1 1 n +∞ k vol z = vol n F -1 1 n +∞ k
245 244 breq1d z = n F -1 1 n +∞ k vol z 0 vol n F -1 1 n +∞ k 0
246 245 ralrn n F -1 1 n +∞ Fn z ran n F -1 1 n +∞ vol z 0 k vol n F -1 1 n +∞ k 0
247 18 243 246 3syl φ z ran n F -1 1 n +∞ vol z 0 k vol n F -1 1 n +∞ k 0
248 247 adantr φ ¬ 0 < 2 F z ran n F -1 1 n +∞ vol z 0 k vol n F -1 1 n +∞ k 0
249 242 248 mpbird φ ¬ 0 < 2 F z ran n F -1 1 n +∞ vol z 0
250 ffn vol : dom vol 0 +∞ vol Fn dom vol
251 7 250 ax-mp vol Fn dom vol
252 28 frnd φ ran n F -1 1 n +∞ dom vol
253 252 adantr φ ¬ 0 < 2 F ran n F -1 1 n +∞ dom vol
254 breq1 x = vol z x 0 vol z 0
255 254 ralima vol Fn dom vol ran n F -1 1 n +∞ dom vol x vol ran n F -1 1 n +∞ x 0 z ran n F -1 1 n +∞ vol z 0
256 251 253 255 sylancr φ ¬ 0 < 2 F x vol ran n F -1 1 n +∞ x 0 z ran n F -1 1 n +∞ vol z 0
257 249 256 mpbird φ ¬ 0 < 2 F x vol ran n F -1 1 n +∞ x 0
258 imassrn vol ran n F -1 1 n +∞ ran vol
259 frn vol : dom vol 0 +∞ ran vol 0 +∞
260 7 259 ax-mp ran vol 0 +∞
261 260 6 sstri ran vol *
262 258 261 sstri vol ran n F -1 1 n +∞ *
263 supxrleub vol ran n F -1 1 n +∞ * 0 * sup vol ran n F -1 1 n +∞ * < 0 x vol ran n F -1 1 n +∞ x 0
264 262 39 263 mp2an sup vol ran n F -1 1 n +∞ * < 0 x vol ran n F -1 1 n +∞ x 0
265 257 264 sylibr φ ¬ 0 < 2 F sup vol ran n F -1 1 n +∞ * < 0
266 128 265 eqbrtrd φ ¬ 0 < 2 F vol * ran n F -1 1 n +∞ 0
267 11 38 40 93 266 xrletrd φ ¬ 0 < 2 F vol A 0
268 267 ex φ ¬ 0 < 2 F vol A 0
269 xrlenlt vol A * 0 * vol A 0 ¬ 0 < vol A
270 10 39 269 sylancl φ vol A 0 ¬ 0 < vol A
271 268 270 sylibd φ ¬ 0 < 2 F ¬ 0 < vol A
272 2 271 mt4d φ 0 < 2 F