Metamath Proof Explorer


Theorem itg2l

Description: Elementhood in the set L of lower sums of the integral. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Hypothesis itg2val.1 L = x | g dom 1 g f F x = 1 g
Assertion itg2l A L g dom 1 g f F A = 1 g

Proof

Step Hyp Ref Expression
1 itg2val.1 L = x | g dom 1 g f F x = 1 g
2 1 eleq2i A L A x | g dom 1 g f F x = 1 g
3 simpr g f F A = 1 g A = 1 g
4 fvex 1 g V
5 3 4 eqeltrdi g f F A = 1 g A V
6 5 rexlimivw g dom 1 g f F A = 1 g A V
7 eqeq1 x = A x = 1 g A = 1 g
8 7 anbi2d x = A g f F x = 1 g g f F A = 1 g
9 8 rexbidv x = A g dom 1 g f F x = 1 g g dom 1 g f F A = 1 g
10 6 9 elab3 A x | g dom 1 g f F x = 1 g g dom 1 g f F A = 1 g
11 2 10 bitri A L g dom 1 g f F A = 1 g