Metamath Proof Explorer


Theorem itg2lcl

Description: The set of lower sums is a set of extended reals. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Hypothesis itg2val.1 L = x | g dom 1 g f F x = 1 g
Assertion itg2lcl L *

Proof

Step Hyp Ref Expression
1 itg2val.1 L = x | g dom 1 g f F x = 1 g
2 itg1cl g dom 1 1 g
3 2 rexrd g dom 1 1 g *
4 simpr g f F x = 1 g x = 1 g
5 4 eleq1d g f F x = 1 g x * 1 g *
6 3 5 syl5ibrcom g dom 1 g f F x = 1 g x *
7 6 rexlimiv g dom 1 g f F x = 1 g x *
8 7 abssi x | g dom 1 g f F x = 1 g *
9 1 8 eqsstri L *