Metamath Proof Explorer


Theorem itg2lea

Description: Approximate version of itg2le . If F <_ G for almost all x , then S.2 F <_ S.2 G . (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Hypotheses itg2lea.1 φ F : 0 +∞
itg2lea.2 φ G : 0 +∞
itg2lea.3 φ A
itg2lea.4 φ vol * A = 0
itg2lea.5 φ x A F x G x
Assertion itg2lea φ 2 F 2 G

Proof

Step Hyp Ref Expression
1 itg2lea.1 φ F : 0 +∞
2 itg2lea.2 φ G : 0 +∞
3 itg2lea.3 φ A
4 itg2lea.4 φ vol * A = 0
5 itg2lea.5 φ x A F x G x
6 2 adantr φ f dom 1 f f F G : 0 +∞
7 simprl φ f dom 1 f f F f dom 1
8 3 adantr φ f dom 1 f f F A
9 4 adantr φ f dom 1 f f F vol * A = 0
10 i1ff f dom 1 f :
11 10 ad2antrl φ f dom 1 f f F f :
12 eldifi x A x
13 ffvelrn f : x f x
14 11 12 13 syl2an φ f dom 1 f f F x A f x
15 14 rexrd φ f dom 1 f f F x A f x *
16 iccssxr 0 +∞ *
17 1 adantr φ f dom 1 f f F F : 0 +∞
18 ffvelrn F : 0 +∞ x F x 0 +∞
19 17 12 18 syl2an φ f dom 1 f f F x A F x 0 +∞
20 16 19 sselid φ f dom 1 f f F x A F x *
21 ffvelrn G : 0 +∞ x G x 0 +∞
22 6 12 21 syl2an φ f dom 1 f f F x A G x 0 +∞
23 16 22 sselid φ f dom 1 f f F x A G x *
24 simprr φ f dom 1 f f F f f F
25 11 ffnd φ f dom 1 f f F f Fn
26 17 ffnd φ f dom 1 f f F F Fn
27 reex V
28 27 a1i φ f dom 1 f f F V
29 inidm =
30 eqidd φ f dom 1 f f F x f x = f x
31 eqidd φ f dom 1 f f F x F x = F x
32 25 26 28 28 29 30 31 ofrfval φ f dom 1 f f F f f F x f x F x
33 24 32 mpbid φ f dom 1 f f F x f x F x
34 33 r19.21bi φ f dom 1 f f F x f x F x
35 12 34 sylan2 φ f dom 1 f f F x A f x F x
36 5 adantlr φ f dom 1 f f F x A F x G x
37 15 20 23 35 36 xrletrd φ f dom 1 f f F x A f x G x
38 6 7 8 9 37 itg2uba φ f dom 1 f f F 1 f 2 G
39 38 expr φ f dom 1 f f F 1 f 2 G
40 39 ralrimiva φ f dom 1 f f F 1 f 2 G
41 itg2cl G : 0 +∞ 2 G *
42 2 41 syl φ 2 G *
43 itg2leub F : 0 +∞ 2 G * 2 F 2 G f dom 1 f f F 1 f 2 G
44 1 42 43 syl2anc φ 2 F 2 G f dom 1 f f F 1 f 2 G
45 40 44 mpbird φ 2 F 2 G