Metamath Proof Explorer


Theorem itg2lecl

Description: If an S.2 integral is bounded above, then it is real. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion itg2lecl F : 0 +∞ A 2 F A 2 F

Proof

Step Hyp Ref Expression
1 itg2cl F : 0 +∞ 2 F *
2 1 3ad2ant1 F : 0 +∞ A 2 F A 2 F *
3 simp2 F : 0 +∞ A 2 F A A
4 itg2ge0 F : 0 +∞ 0 2 F
5 4 3ad2ant1 F : 0 +∞ A 2 F A 0 2 F
6 simp3 F : 0 +∞ A 2 F A 2 F A
7 xrrege0 2 F * A 0 2 F 2 F A 2 F
8 2 3 5 6 7 syl22anc F : 0 +∞ A 2 F A 2 F