Metamath Proof Explorer


Theorem itg2lr

Description: Sufficient condition for elementhood in the set L . (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Hypothesis itg2val.1 L = x | g dom 1 g f F x = 1 g
Assertion itg2lr G dom 1 G f F 1 G L

Proof

Step Hyp Ref Expression
1 itg2val.1 L = x | g dom 1 g f F x = 1 g
2 eqid 1 G = 1 G
3 breq1 g = G g f F G f F
4 fveq2 g = G 1 g = 1 G
5 4 eqeq2d g = G 1 G = 1 g 1 G = 1 G
6 3 5 anbi12d g = G g f F 1 G = 1 g G f F 1 G = 1 G
7 6 rspcev G dom 1 G f F 1 G = 1 G g dom 1 g f F 1 G = 1 g
8 2 7 mpanr2 G dom 1 G f F g dom 1 g f F 1 G = 1 g
9 1 itg2l 1 G L g dom 1 g f F 1 G = 1 g
10 8 9 sylibr G dom 1 G f F 1 G L