Metamath Proof Explorer


Theorem itg2monolem2

Description: Lemma for itg2mono . (Contributed by Mario Carneiro, 16-Aug-2014)

Ref Expression
Hypotheses itg2mono.1 G = x sup ran n F n x <
itg2mono.2 φ n F n MblFn
itg2mono.3 φ n F n : 0 +∞
itg2mono.4 φ n F n f F n + 1
itg2mono.5 φ x y n F n x y
itg2mono.6 S = sup ran n 2 F n * <
itg2monolem2.7 φ P dom 1
itg2monolem2.8 φ P f G
itg2monolem2.9 φ ¬ 1 P S
Assertion itg2monolem2 φ S

Proof

Step Hyp Ref Expression
1 itg2mono.1 G = x sup ran n F n x <
2 itg2mono.2 φ n F n MblFn
3 itg2mono.3 φ n F n : 0 +∞
4 itg2mono.4 φ n F n f F n + 1
5 itg2mono.5 φ x y n F n x y
6 itg2mono.6 S = sup ran n 2 F n * <
7 itg2monolem2.7 φ P dom 1
8 itg2monolem2.8 φ P f G
9 itg2monolem2.9 φ ¬ 1 P S
10 icossicc 0 +∞ 0 +∞
11 fss F n : 0 +∞ 0 +∞ 0 +∞ F n : 0 +∞
12 3 10 11 sylancl φ n F n : 0 +∞
13 itg2cl F n : 0 +∞ 2 F n *
14 12 13 syl φ n 2 F n *
15 14 fmpttd φ n 2 F n : *
16 15 frnd φ ran n 2 F n *
17 supxrcl ran n 2 F n * sup ran n 2 F n * < *
18 16 17 syl φ sup ran n 2 F n * < *
19 6 18 eqeltrid φ S *
20 itg1cl P dom 1 1 P
21 7 20 syl φ 1 P
22 mnfxr −∞ *
23 22 a1i φ −∞ *
24 fveq2 n = 1 F n = F 1
25 24 feq1d n = 1 F n : 0 +∞ F 1 : 0 +∞
26 12 ralrimiva φ n F n : 0 +∞
27 1nn 1
28 27 a1i φ 1
29 25 26 28 rspcdva φ F 1 : 0 +∞
30 itg2cl F 1 : 0 +∞ 2 F 1 *
31 29 30 syl φ 2 F 1 *
32 itg2ge0 F 1 : 0 +∞ 0 2 F 1
33 29 32 syl φ 0 2 F 1
34 mnflt0 −∞ < 0
35 0xr 0 *
36 xrltletr −∞ * 0 * 2 F 1 * −∞ < 0 0 2 F 1 −∞ < 2 F 1
37 22 35 31 36 mp3an12i φ −∞ < 0 0 2 F 1 −∞ < 2 F 1
38 34 37 mpani φ 0 2 F 1 −∞ < 2 F 1
39 33 38 mpd φ −∞ < 2 F 1
40 2fveq3 n = 1 2 F n = 2 F 1
41 eqid n 2 F n = n 2 F n
42 fvex 2 F 1 V
43 40 41 42 fvmpt 1 n 2 F n 1 = 2 F 1
44 27 43 ax-mp n 2 F n 1 = 2 F 1
45 15 ffnd φ n 2 F n Fn
46 fnfvelrn n 2 F n Fn 1 n 2 F n 1 ran n 2 F n
47 45 27 46 sylancl φ n 2 F n 1 ran n 2 F n
48 44 47 eqeltrrid φ 2 F 1 ran n 2 F n
49 supxrub ran n 2 F n * 2 F 1 ran n 2 F n 2 F 1 sup ran n 2 F n * <
50 16 48 49 syl2anc φ 2 F 1 sup ran n 2 F n * <
51 50 6 breqtrrdi φ 2 F 1 S
52 23 31 19 39 51 xrltletrd φ −∞ < S
53 21 rexrd φ 1 P *
54 xrltnle S * 1 P * S < 1 P ¬ 1 P S
55 19 53 54 syl2anc φ S < 1 P ¬ 1 P S
56 9 55 mpbird φ S < 1 P
57 19 53 56 xrltled φ S 1 P
58 xrre S * 1 P −∞ < S S 1 P S
59 19 21 52 57 58 syl22anc φ S