Metamath Proof Explorer


Theorem itg2monolem3

Description: Lemma for itg2mono . (Contributed by Mario Carneiro, 16-Aug-2014)

Ref Expression
Hypotheses itg2mono.1 G = x sup ran n F n x <
itg2mono.2 φ n F n MblFn
itg2mono.3 φ n F n : 0 +∞
itg2mono.4 φ n F n f F n + 1
itg2mono.5 φ x y n F n x y
itg2mono.6 S = sup ran n 2 F n * <
itg2monolem2.7 φ P dom 1
itg2monolem2.8 φ P f G
itg2monolem2.9 φ ¬ 1 P S
Assertion itg2monolem3 φ 1 P S

Proof

Step Hyp Ref Expression
1 itg2mono.1 G = x sup ran n F n x <
2 itg2mono.2 φ n F n MblFn
3 itg2mono.3 φ n F n : 0 +∞
4 itg2mono.4 φ n F n f F n + 1
5 itg2mono.5 φ x y n F n x y
6 itg2mono.6 S = sup ran n 2 F n * <
7 itg2monolem2.7 φ P dom 1
8 itg2monolem2.8 φ P f G
9 itg2monolem2.9 φ ¬ 1 P S
10 1 2 3 4 5 6 7 8 9 itg2monolem2 φ S
11 10 adantr φ t + S
12 11 recnd φ t + S
13 7 adantr φ t + P dom 1
14 itg1cl P dom 1 1 P
15 13 14 syl φ t + 1 P
16 15 recnd φ t + 1 P
17 simpr φ t + t +
18 17 rpred φ t + t
19 11 18 readdcld φ t + S + t
20 19 recnd φ t + S + t
21 0red φ t + 0
22 0xr 0 *
23 22 a1i φ 0 *
24 fveq2 n = 1 F n = F 1
25 24 feq1d n = 1 F n : 0 +∞ F 1 : 0 +∞
26 icossicc 0 +∞ 0 +∞
27 fss F n : 0 +∞ 0 +∞ 0 +∞ F n : 0 +∞
28 3 26 27 sylancl φ n F n : 0 +∞
29 28 ralrimiva φ n F n : 0 +∞
30 1nn 1
31 30 a1i φ 1
32 25 29 31 rspcdva φ F 1 : 0 +∞
33 itg2cl F 1 : 0 +∞ 2 F 1 *
34 32 33 syl φ 2 F 1 *
35 itg2cl F n : 0 +∞ 2 F n *
36 28 35 syl φ n 2 F n *
37 36 fmpttd φ n 2 F n : *
38 37 frnd φ ran n 2 F n *
39 supxrcl ran n 2 F n * sup ran n 2 F n * < *
40 38 39 syl φ sup ran n 2 F n * < *
41 6 40 eqeltrid φ S *
42 itg2ge0 F 1 : 0 +∞ 0 2 F 1
43 32 42 syl φ 0 2 F 1
44 2fveq3 n = 1 2 F n = 2 F 1
45 eqid n 2 F n = n 2 F n
46 fvex 2 F 1 V
47 44 45 46 fvmpt 1 n 2 F n 1 = 2 F 1
48 30 47 ax-mp n 2 F n 1 = 2 F 1
49 37 ffnd φ n 2 F n Fn
50 fnfvelrn n 2 F n Fn 1 n 2 F n 1 ran n 2 F n
51 49 30 50 sylancl φ n 2 F n 1 ran n 2 F n
52 48 51 eqeltrrid φ 2 F 1 ran n 2 F n
53 supxrub ran n 2 F n * 2 F 1 ran n 2 F n 2 F 1 sup ran n 2 F n * <
54 38 52 53 syl2anc φ 2 F 1 sup ran n 2 F n * <
55 54 6 breqtrrdi φ 2 F 1 S
56 23 34 41 43 55 xrletrd φ 0 S
57 56 adantr φ t + 0 S
58 11 17 ltaddrpd φ t + S < S + t
59 21 11 19 57 58 lelttrd φ t + 0 < S + t
60 59 gt0ne0d φ t + S + t 0
61 12 16 20 60 div23d φ t + S 1 P S + t = S S + t 1 P
62 11 19 60 redivcld φ t + S S + t
63 62 15 remulcld φ t + S S + t 1 P
64 halfre 1 2
65 ifcl S S + t 1 2 if 1 2 S S + t S S + t 1 2
66 62 64 65 sylancl φ t + if 1 2 S S + t S S + t 1 2
67 66 15 remulcld φ t + if 1 2 S S + t S S + t 1 2 1 P
68 max2 1 2 S S + t S S + t if 1 2 S S + t S S + t 1 2
69 64 62 68 sylancr φ t + S S + t if 1 2 S S + t S S + t 1 2
70 7 14 syl φ 1 P
71 70 rexrd φ 1 P *
72 xrltnle S * 1 P * S < 1 P ¬ 1 P S
73 41 71 72 syl2anc φ S < 1 P ¬ 1 P S
74 9 73 mpbird φ S < 1 P
75 74 adantr φ t + S < 1 P
76 21 11 15 57 75 lelttrd φ t + 0 < 1 P
77 lemul1 S S + t if 1 2 S S + t S S + t 1 2 1 P 0 < 1 P S S + t if 1 2 S S + t S S + t 1 2 S S + t 1 P if 1 2 S S + t S S + t 1 2 1 P
78 62 66 15 76 77 syl112anc φ t + S S + t if 1 2 S S + t S S + t 1 2 S S + t 1 P if 1 2 S S + t S S + t 1 2 1 P
79 69 78 mpbid φ t + S S + t 1 P if 1 2 S S + t S S + t 1 2 1 P
80 2 adantlr φ t + n F n MblFn
81 3 adantlr φ t + n F n : 0 +∞
82 4 adantlr φ t + n F n f F n + 1
83 5 adantlr φ t + x y n F n x y
84 64 a1i φ t + 1 2
85 halfgt0 0 < 1 2
86 85 a1i φ t + 0 < 1 2
87 max1 1 2 S S + t 1 2 if 1 2 S S + t S S + t 1 2
88 64 62 87 sylancr φ t + 1 2 if 1 2 S S + t S S + t 1 2
89 21 84 66 86 88 ltletrd φ t + 0 < if 1 2 S S + t S S + t 1 2
90 20 mulid1d φ t + S + t 1 = S + t
91 58 90 breqtrrd φ t + S < S + t 1
92 1red φ t + 1
93 ltdivmul S 1 S + t 0 < S + t S S + t < 1 S < S + t 1
94 11 92 19 59 93 syl112anc φ t + S S + t < 1 S < S + t 1
95 91 94 mpbird φ t + S S + t < 1
96 halflt1 1 2 < 1
97 breq1 S S + t = if 1 2 S S + t S S + t 1 2 S S + t < 1 if 1 2 S S + t S S + t 1 2 < 1
98 breq1 1 2 = if 1 2 S S + t S S + t 1 2 1 2 < 1 if 1 2 S S + t S S + t 1 2 < 1
99 97 98 ifboth S S + t < 1 1 2 < 1 if 1 2 S S + t S S + t 1 2 < 1
100 95 96 99 sylancl φ t + if 1 2 S S + t S S + t 1 2 < 1
101 1xr 1 *
102 elioo2 0 * 1 * if 1 2 S S + t S S + t 1 2 0 1 if 1 2 S S + t S S + t 1 2 0 < if 1 2 S S + t S S + t 1 2 if 1 2 S S + t S S + t 1 2 < 1
103 22 101 102 mp2an if 1 2 S S + t S S + t 1 2 0 1 if 1 2 S S + t S S + t 1 2 0 < if 1 2 S S + t S S + t 1 2 if 1 2 S S + t S S + t 1 2 < 1
104 66 89 100 103 syl3anbrc φ t + if 1 2 S S + t S S + t 1 2 0 1
105 8 adantr φ t + P f G
106 fveq2 y = x P y = P x
107 106 oveq2d y = x if 1 2 S S + t S S + t 1 2 P y = if 1 2 S S + t S S + t 1 2 P x
108 fveq2 y = x F n y = F n x
109 107 108 breq12d y = x if 1 2 S S + t S S + t 1 2 P y F n y if 1 2 S S + t S S + t 1 2 P x F n x
110 109 cbvrabv y | if 1 2 S S + t S S + t 1 2 P y F n y = x | if 1 2 S S + t S S + t 1 2 P x F n x
111 110 mpteq2i n y | if 1 2 S S + t S S + t 1 2 P y F n y = n x | if 1 2 S S + t S S + t 1 2 P x F n x
112 1 80 81 82 83 6 104 13 105 11 111 itg2monolem1 φ t + if 1 2 S S + t S S + t 1 2 1 P S
113 63 67 11 79 112 letrd φ t + S S + t 1 P S
114 61 113 eqbrtrd φ t + S 1 P S + t S
115 11 15 remulcld φ t + S 1 P
116 ledivmul2 S 1 P S S + t 0 < S + t S 1 P S + t S S 1 P S S + t
117 115 11 19 59 116 syl112anc φ t + S 1 P S + t S S 1 P S S + t
118 114 117 mpbid φ t + S 1 P S S + t
119 66 15 89 76 mulgt0d φ t + 0 < if 1 2 S S + t S S + t 1 2 1 P
120 21 67 11 119 112 ltletrd φ t + 0 < S
121 lemul2 1 P S + t S 0 < S 1 P S + t S 1 P S S + t
122 15 19 11 120 121 syl112anc φ t + 1 P S + t S 1 P S S + t
123 118 122 mpbird φ t + 1 P S + t
124 123 ralrimiva φ t + 1 P S + t
125 alrple 1 P S 1 P S t + 1 P S + t
126 70 10 125 syl2anc φ 1 P S t + 1 P S + t
127 124 126 mpbird φ 1 P S