Metamath Proof Explorer


Theorem itg2split

Description: The S.2 integral splits under an almost disjoint union. The proof avoids the use of itg2add , which requires countable choice. (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Hypotheses itg2split.a φ A dom vol
itg2split.b φ B dom vol
itg2split.i φ vol * A B = 0
itg2split.u φ U = A B
itg2split.c φ x U C 0 +∞
itg2split.f F = x if x A C 0
itg2split.g G = x if x B C 0
itg2split.h H = x if x U C 0
itg2split.sf φ 2 F
itg2split.sg φ 2 G
Assertion itg2split φ 2 H = 2 F + 2 G

Proof

Step Hyp Ref Expression
1 itg2split.a φ A dom vol
2 itg2split.b φ B dom vol
3 itg2split.i φ vol * A B = 0
4 itg2split.u φ U = A B
5 itg2split.c φ x U C 0 +∞
6 itg2split.f F = x if x A C 0
7 itg2split.g G = x if x B C 0
8 itg2split.h H = x if x U C 0
9 itg2split.sf φ 2 F
10 itg2split.sg φ 2 G
11 5 adantlr φ x x U C 0 +∞
12 0e0iccpnf 0 0 +∞
13 12 a1i φ x ¬ x U 0 0 +∞
14 11 13 ifclda φ x if x U C 0 0 +∞
15 14 8 fmptd φ H : 0 +∞
16 itg2cl H : 0 +∞ 2 H *
17 15 16 syl φ 2 H *
18 9 10 readdcld φ 2 F + 2 G
19 18 rexrd φ 2 F + 2 G *
20 1 2 3 4 5 6 7 8 9 10 itg2splitlem φ 2 H 2 F + 2 G
21 10 adantr φ f dom 1 f f F 2 G
22 itg2lecl H : 0 +∞ 2 F + 2 G 2 H 2 F + 2 G 2 H
23 15 18 20 22 syl3anc φ 2 H
24 23 adantr φ f dom 1 f f F 2 H
25 itg1cl f dom 1 1 f
26 25 ad2antrl φ f dom 1 f f F 1 f
27 simprll φ f dom 1 f f F g dom 1 g f G f dom 1
28 simprrl φ f dom 1 f f F g dom 1 g f G g dom 1
29 27 28 itg1add φ f dom 1 f f F g dom 1 g f G 1 f + f g = 1 f + 1 g
30 15 adantr φ f dom 1 f f F g dom 1 g f G H : 0 +∞
31 27 28 i1fadd φ f dom 1 f f F g dom 1 g f G f + f g dom 1
32 inss1 A B A
33 mblss A dom vol A
34 1 33 syl φ A
35 32 34 sstrid φ A B
36 35 adantr φ f dom 1 f f F g dom 1 g f G A B
37 3 adantr φ f dom 1 f f F g dom 1 g f G vol * A B = 0
38 nfv x φ
39 nfv x f dom 1
40 nfcv _ x f
41 nfcv _ x r
42 nfmpt1 _ x x if x A C 0
43 6 42 nfcxfr _ x F
44 40 41 43 nfbr x f f F
45 39 44 nfan x f dom 1 f f F
46 nfv x g dom 1
47 nfcv _ x g
48 nfmpt1 _ x x if x B C 0
49 7 48 nfcxfr _ x G
50 47 41 49 nfbr x g f G
51 46 50 nfan x g dom 1 g f G
52 45 51 nfan x f dom 1 f f F g dom 1 g f G
53 38 52 nfan x φ f dom 1 f f F g dom 1 g f G
54 eldifi x A B x
55 i1ff f dom 1 f :
56 27 55 syl φ f dom 1 f f F g dom 1 g f G f :
57 56 ffnd φ f dom 1 f f F g dom 1 g f G f Fn
58 i1ff g dom 1 g :
59 28 58 syl φ f dom 1 f f F g dom 1 g f G g :
60 59 ffnd φ f dom 1 f f F g dom 1 g f G g Fn
61 reex V
62 61 a1i φ f dom 1 f f F g dom 1 g f G V
63 inidm =
64 eqidd φ f dom 1 f f F g dom 1 g f G x f x = f x
65 eqidd φ f dom 1 f f F g dom 1 g f G x g x = g x
66 57 60 62 62 63 64 65 ofval φ f dom 1 f f F g dom 1 g f G x f + f g x = f x + g x
67 54 66 sylan2 φ f dom 1 f f F g dom 1 g f G x A B f + f g x = f x + g x
68 ffvelrn f : x f x
69 56 54 68 syl2an φ f dom 1 f f F g dom 1 g f G x A B f x
70 ffvelrn g : x g x
71 59 54 70 syl2an φ f dom 1 f f F g dom 1 g f G x A B g x
72 69 71 readdcld φ f dom 1 f f F g dom 1 g f G x A B f x + g x
73 72 rexrd φ f dom 1 f f F g dom 1 g f G x A B f x + g x *
74 73 adantr φ f dom 1 f f F g dom 1 g f G x A B x A f x + g x *
75 69 adantr φ f dom 1 f f F g dom 1 g f G x A B x A f x
76 75 rexrd φ f dom 1 f f F g dom 1 g f G x A B x A f x *
77 iccssxr 0 +∞ *
78 ffvelrn H : 0 +∞ x H x 0 +∞
79 30 54 78 syl2an φ f dom 1 f f F g dom 1 g f G x A B H x 0 +∞
80 77 79 sseldi φ f dom 1 f f F g dom 1 g f G x A B H x *
81 80 adantr φ f dom 1 f f F g dom 1 g f G x A B x A H x *
82 71 adantr φ f dom 1 f f F g dom 1 g f G x A B x A g x
83 0red φ f dom 1 f f F g dom 1 g f G x A B x A 0
84 simprrr φ f dom 1 f f F g dom 1 g f G g f G
85 61 a1i φ g Fn V
86 fvexd φ g Fn x g x V
87 ssun2 B A B
88 87 4 sseqtrrid φ B U
89 88 sselda φ x B x U
90 89 adantlr φ x x B x U
91 90 11 syldan φ x x B C 0 +∞
92 12 a1i φ x ¬ x B 0 0 +∞
93 91 92 ifclda φ x if x B C 0 0 +∞
94 93 adantlr φ g Fn x if x B C 0 0 +∞
95 simpr φ g Fn g Fn
96 dffn5 g Fn g = x g x
97 95 96 sylib φ g Fn g = x g x
98 7 a1i φ g Fn G = x if x B C 0
99 85 86 94 97 98 ofrfval2 φ g Fn g f G x g x if x B C 0
100 60 99 syldan φ f dom 1 f f F g dom 1 g f G g f G x g x if x B C 0
101 84 100 mpbid φ f dom 1 f f F g dom 1 g f G x g x if x B C 0
102 101 r19.21bi φ f dom 1 f f F g dom 1 g f G x g x if x B C 0
103 54 102 sylan2 φ f dom 1 f f F g dom 1 g f G x A B g x if x B C 0
104 103 adantr φ f dom 1 f f F g dom 1 g f G x A B x A g x if x B C 0
105 eldifn x A B ¬ x A B
106 105 adantl φ f dom 1 f f F g dom 1 g f G x A B ¬ x A B
107 elin x A B x A x B
108 106 107 sylnib φ f dom 1 f f F g dom 1 g f G x A B ¬ x A x B
109 imnan x A ¬ x B ¬ x A x B
110 108 109 sylibr φ f dom 1 f f F g dom 1 g f G x A B x A ¬ x B
111 110 imp φ f dom 1 f f F g dom 1 g f G x A B x A ¬ x B
112 111 iffalsed φ f dom 1 f f F g dom 1 g f G x A B x A if x B C 0 = 0
113 104 112 breqtrd φ f dom 1 f f F g dom 1 g f G x A B x A g x 0
114 82 83 75 113 leadd2dd φ f dom 1 f f F g dom 1 g f G x A B x A f x + g x f x + 0
115 75 recnd φ f dom 1 f f F g dom 1 g f G x A B x A f x
116 115 addid1d φ f dom 1 f f F g dom 1 g f G x A B x A f x + 0 = f x
117 114 116 breqtrd φ f dom 1 f f F g dom 1 g f G x A B x A f x + g x f x
118 simprlr φ f dom 1 f f F g dom 1 g f G f f F
119 61 a1i φ f Fn V
120 fvexd φ f Fn x f x V
121 ssun1 A A B
122 121 4 sseqtrrid φ A U
123 122 sselda φ x A x U
124 123 adantlr φ x x A x U
125 124 11 syldan φ x x A C 0 +∞
126 12 a1i φ x ¬ x A 0 0 +∞
127 125 126 ifclda φ x if x A C 0 0 +∞
128 127 adantlr φ f Fn x if x A C 0 0 +∞
129 simpr φ f Fn f Fn
130 dffn5 f Fn f = x f x
131 129 130 sylib φ f Fn f = x f x
132 6 a1i φ f Fn F = x if x A C 0
133 119 120 128 131 132 ofrfval2 φ f Fn f f F x f x if x A C 0
134 57 133 syldan φ f dom 1 f f F g dom 1 g f G f f F x f x if x A C 0
135 118 134 mpbid φ f dom 1 f f F g dom 1 g f G x f x if x A C 0
136 135 r19.21bi φ f dom 1 f f F g dom 1 g f G x f x if x A C 0
137 54 136 sylan2 φ f dom 1 f f F g dom 1 g f G x A B f x if x A C 0
138 137 adantr φ f dom 1 f f F g dom 1 g f G x A B x A f x if x A C 0
139 122 ad2antrr φ f dom 1 f f F g dom 1 g f G x A B A U
140 139 sselda φ f dom 1 f f F g dom 1 g f G x A B x A x U
141 140 iftrued φ f dom 1 f f F g dom 1 g f G x A B x A if x U C 0 = C
142 simpr φ f dom 1 f f F g dom 1 g f G x x
143 14 adantlr φ f dom 1 f f F g dom 1 g f G x if x U C 0 0 +∞
144 8 fvmpt2 x if x U C 0 0 +∞ H x = if x U C 0
145 142 143 144 syl2anc φ f dom 1 f f F g dom 1 g f G x H x = if x U C 0
146 54 145 sylan2 φ f dom 1 f f F g dom 1 g f G x A B H x = if x U C 0
147 146 adantr φ f dom 1 f f F g dom 1 g f G x A B x A H x = if x U C 0
148 iftrue x A if x A C 0 = C
149 148 adantl φ f dom 1 f f F g dom 1 g f G x A B x A if x A C 0 = C
150 141 147 149 3eqtr4d φ f dom 1 f f F g dom 1 g f G x A B x A H x = if x A C 0
151 138 150 breqtrrd φ f dom 1 f f F g dom 1 g f G x A B x A f x H x
152 74 76 81 117 151 xrletrd φ f dom 1 f f F g dom 1 g f G x A B x A f x + g x H x
153 73 adantr φ f dom 1 f f F g dom 1 g f G x A B ¬ x A f x + g x *
154 71 adantr φ f dom 1 f f F g dom 1 g f G x A B ¬ x A g x
155 154 rexrd φ f dom 1 f f F g dom 1 g f G x A B ¬ x A g x *
156 80 adantr φ f dom 1 f f F g dom 1 g f G x A B ¬ x A H x *
157 69 adantr φ f dom 1 f f F g dom 1 g f G x A B ¬ x A f x
158 0red φ f dom 1 f f F g dom 1 g f G x A B ¬ x A 0
159 137 adantr φ f dom 1 f f F g dom 1 g f G x A B ¬ x A f x if x A C 0
160 iffalse ¬ x A if x A C 0 = 0
161 160 adantl φ f dom 1 f f F g dom 1 g f G x A B ¬ x A if x A C 0 = 0
162 159 161 breqtrd φ f dom 1 f f F g dom 1 g f G x A B ¬ x A f x 0
163 157 158 154 162 leadd1dd φ f dom 1 f f F g dom 1 g f G x A B ¬ x A f x + g x 0 + g x
164 154 recnd φ f dom 1 f f F g dom 1 g f G x A B ¬ x A g x
165 164 addid2d φ f dom 1 f f F g dom 1 g f G x A B ¬ x A 0 + g x = g x
166 163 165 breqtrd φ f dom 1 f f F g dom 1 g f G x A B ¬ x A f x + g x g x
167 103 adantr φ f dom 1 f f F g dom 1 g f G x A B ¬ x A g x if x B C 0
168 146 adantr φ f dom 1 f f F g dom 1 g f G x A B ¬ x A H x = if x U C 0
169 4 ad3antrrr φ f dom 1 f f F g dom 1 g f G x A B ¬ x A U = A B
170 169 eleq2d φ f dom 1 f f F g dom 1 g f G x A B ¬ x A x U x A B
171 elun x A B x A x B
172 biorf ¬ x A x B x A x B
173 171 172 bitr4id ¬ x A x A B x B
174 173 adantl φ f dom 1 f f F g dom 1 g f G x A B ¬ x A x A B x B
175 170 174 bitrd φ f dom 1 f f F g dom 1 g f G x A B ¬ x A x U x B
176 175 ifbid φ f dom 1 f f F g dom 1 g f G x A B ¬ x A if x U C 0 = if x B C 0
177 168 176 eqtrd φ f dom 1 f f F g dom 1 g f G x A B ¬ x A H x = if x B C 0
178 167 177 breqtrrd φ f dom 1 f f F g dom 1 g f G x A B ¬ x A g x H x
179 153 155 156 166 178 xrletrd φ f dom 1 f f F g dom 1 g f G x A B ¬ x A f x + g x H x
180 152 179 pm2.61dan φ f dom 1 f f F g dom 1 g f G x A B f x + g x H x
181 67 180 eqbrtrd φ f dom 1 f f F g dom 1 g f G x A B f + f g x H x
182 181 ex φ f dom 1 f f F g dom 1 g f G x A B f + f g x H x
183 53 182 ralrimi φ f dom 1 f f F g dom 1 g f G x A B f + f g x H x
184 nfv y f + f g x H x
185 nfcv _ x f + f g y
186 nfcv _ x
187 nfmpt1 _ x x if x U C 0
188 8 187 nfcxfr _ x H
189 nfcv _ x y
190 188 189 nffv _ x H y
191 185 186 190 nfbr x f + f g y H y
192 fveq2 x = y f + f g x = f + f g y
193 fveq2 x = y H x = H y
194 192 193 breq12d x = y f + f g x H x f + f g y H y
195 184 191 194 cbvralw x A B f + f g x H x y A B f + f g y H y
196 183 195 sylib φ f dom 1 f f F g dom 1 g f G y A B f + f g y H y
197 196 r19.21bi φ f dom 1 f f F g dom 1 g f G y A B f + f g y H y
198 30 31 36 37 197 itg2uba φ f dom 1 f f F g dom 1 g f G 1 f + f g 2 H
199 29 198 eqbrtrrd φ f dom 1 f f F g dom 1 g f G 1 f + 1 g 2 H
200 26 adantrr φ f dom 1 f f F g dom 1 g f G 1 f
201 itg1cl g dom 1 1 g
202 28 201 syl φ f dom 1 f f F g dom 1 g f G 1 g
203 23 adantr φ f dom 1 f f F g dom 1 g f G 2 H
204 200 202 203 leaddsub2d φ f dom 1 f f F g dom 1 g f G 1 f + 1 g 2 H 1 g 2 H 1 f
205 199 204 mpbid φ f dom 1 f f F g dom 1 g f G 1 g 2 H 1 f
206 205 anassrs φ f dom 1 f f F g dom 1 g f G 1 g 2 H 1 f
207 206 expr φ f dom 1 f f F g dom 1 g f G 1 g 2 H 1 f
208 207 ralrimiva φ f dom 1 f f F g dom 1 g f G 1 g 2 H 1 f
209 93 7 fmptd φ G : 0 +∞
210 209 adantr φ f dom 1 f f F G : 0 +∞
211 24 26 resubcld φ f dom 1 f f F 2 H 1 f
212 211 rexrd φ f dom 1 f f F 2 H 1 f *
213 itg2leub G : 0 +∞ 2 H 1 f * 2 G 2 H 1 f g dom 1 g f G 1 g 2 H 1 f
214 210 212 213 syl2anc φ f dom 1 f f F 2 G 2 H 1 f g dom 1 g f G 1 g 2 H 1 f
215 208 214 mpbird φ f dom 1 f f F 2 G 2 H 1 f
216 21 24 26 215 lesubd φ f dom 1 f f F 1 f 2 H 2 G
217 216 expr φ f dom 1 f f F 1 f 2 H 2 G
218 217 ralrimiva φ f dom 1 f f F 1 f 2 H 2 G
219 127 6 fmptd φ F : 0 +∞
220 23 10 resubcld φ 2 H 2 G
221 220 rexrd φ 2 H 2 G *
222 itg2leub F : 0 +∞ 2 H 2 G * 2 F 2 H 2 G f dom 1 f f F 1 f 2 H 2 G
223 219 221 222 syl2anc φ 2 F 2 H 2 G f dom 1 f f F 1 f 2 H 2 G
224 218 223 mpbird φ 2 F 2 H 2 G
225 leaddsub 2 F 2 G 2 H 2 F + 2 G 2 H 2 F 2 H 2 G
226 9 10 23 225 syl3anc φ 2 F + 2 G 2 H 2 F 2 H 2 G
227 224 226 mpbird φ 2 F + 2 G 2 H
228 17 19 20 227 xrletrid φ 2 H = 2 F + 2 G