Metamath Proof Explorer


Theorem itg2ub

Description: The integral of a nonnegative real function F is an upper bound on the integrals of all simple functions G dominated by F . (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion itg2ub F : 0 +∞ G dom 1 G f F 1 G 2 F

Proof

Step Hyp Ref Expression
1 eqid x | g dom 1 g f F x = 1 g = x | g dom 1 g f F x = 1 g
2 1 itg2lcl x | g dom 1 g f F x = 1 g *
3 1 itg2lr G dom 1 G f F 1 G x | g dom 1 g f F x = 1 g
4 3 3adant1 F : 0 +∞ G dom 1 G f F 1 G x | g dom 1 g f F x = 1 g
5 supxrub x | g dom 1 g f F x = 1 g * 1 G x | g dom 1 g f F x = 1 g 1 G sup x | g dom 1 g f F x = 1 g * <
6 2 4 5 sylancr F : 0 +∞ G dom 1 G f F 1 G sup x | g dom 1 g f F x = 1 g * <
7 1 itg2val F : 0 +∞ 2 F = sup x | g dom 1 g f F x = 1 g * <
8 7 3ad2ant1 F : 0 +∞ G dom 1 G f F 2 F = sup x | g dom 1 g f F x = 1 g * <
9 6 8 breqtrrd F : 0 +∞ G dom 1 G f F 1 G 2 F